Abstract:Remote Sensing Vision-Language Models (RS VLMs) have made much progress in the tasks of remote sensing (RS) image comprehension. While performing well in multi-modal reasoning and multi-turn conversations, the existing models lack pixel-level understanding and struggle with multi-image inputs. In this work, we propose RSUniVLM, a unified, end-to-end RS VLM designed for comprehensive vision understanding across multiple granularity, including image-level, region-level, and pixel-level tasks. RSUniVLM also performs effectively in multi-image analysis, with instances of change detection and change captioning. To enhance the model's ability to capture visual information at different levels without increasing model size, we design a novel architecture called Granularity-oriented Mixture of Experts to constraint the model to about 1 billion parameters. We also construct a large-scale RS instruction-following dataset based on a variety of existing datasets in both RS and general domain, encompassing various tasks such as object localization, visual question answering, and semantic segmentation. Substantial experiments have been conducted to validate the superiority of the proposed RSUniVLM up to state-of-the-art across various RS tasks. Code and model will be available at \href{https://github.com/xuliu-cyber/RSUniVLM}{here}.
Abstract:Physically Based Rendering (PBR) materials play a crucial role in modern graphics, enabling photorealistic rendering across diverse environment maps. Developing an effective and efficient algorithm that is capable of automatically generating high-quality PBR materials rather than RGB texture for 3D meshes can significantly streamline the 3D content creation. Most existing methods leverage pre-trained 2D diffusion models for multi-view image synthesis, which often leads to severe inconsistency between the generated textures and input 3D meshes. This paper presents TexGaussian, a novel method that uses octant-aligned 3D Gaussian Splatting for rapid PBR material generation. Specifically, we place each 3D Gaussian on the finest leaf node of the octree built from the input 3D mesh to render the multiview images not only for the albedo map but also for roughness and metallic. Moreover, our model is trained in a regression manner instead of diffusion denoising, capable of generating the PBR material for a 3D mesh in a single feed-forward process. Extensive experiments on publicly available benchmarks demonstrate that our method synthesizes more visually pleasing PBR materials and runs faster than previous methods in both unconditional and text-conditional scenarios, which exhibit better consistency with the given geometry. Our code and trained models are available at https://3d-aigc.github.io/TexGaussian.
Abstract:The challenge of automatically synthesizing high-quality vector fonts, particularly for writing systems (e.g., Chinese) consisting of huge amounts of complex glyphs, remains unsolved. Existing font synthesis techniques fall into two categories: 1) methods that directly generate vector glyphs, and 2) methods that initially synthesize glyph images and then vectorize them. However, the first category often fails to construct complete and correct shapes for complex glyphs, while the latter struggles to efficiently synthesize high-resolution (i.e., 1024 $\times$ 1024 or higher) glyph images while preserving local details. In this paper, we introduce HFH-Font, a few-shot font synthesis method capable of efficiently generating high-resolution glyph images that can be converted into high-quality vector glyphs. More specifically, our method employs a diffusion model-based generative framework with component-aware conditioning to learn different levels of style information adaptable to varying input reference sizes. We also design a distillation module based on Score Distillation Sampling for 1-step fast inference, and a style-guided super-resolution module to refine and upscale low-resolution synthesis results. Extensive experiments, including a user study with professional font designers, have been conducted to demonstrate that our method significantly outperforms existing font synthesis approaches. Experimental results show that our method produces high-fidelity, high-resolution raster images which can be vectorized into high-quality vector fonts. Using our method, for the first time, large-scale Chinese vector fonts of a quality comparable to those manually created by professional font designers can be automatically generated.
Abstract:To bridge the gap between artists and non-specialists, we present a unified framework, Neural-Polyptych, to facilitate the creation of expansive, high-resolution paintings by seamlessly incorporating interactive hand-drawn sketches with fragments from original paintings. We have designed a multi-scale GAN-based architecture to decompose the generation process into two parts, each responsible for identifying global and local features. To enhance the fidelity of semantic details generated from users' sketched outlines, we introduce a Correspondence Attention module utilizing our Reference Bank strategy. This ensures the creation of high-quality, intricately detailed elements within the artwork. The final result is achieved by carefully blending these local elements while preserving coherent global consistency. Consequently, this methodology enables the production of digital paintings at megapixel scale, accommodating diverse artistic expressions and enabling users to recreate content in a controlled manner. We validate our approach to diverse genres of both Eastern and Western paintings. Applications such as large painting extension, texture shuffling, genre switching, mural art restoration, and recomposition can be successfully based on our framework.
Abstract:Diffusion models have emerged as a popular method for 3D generation. However, it is still challenging for diffusion models to efficiently generate diverse and high-quality 3D shapes. In this paper, we introduce OctFusion, which can generate 3D shapes with arbitrary resolutions in 2.5 seconds on a single Nvidia 4090 GPU, and the extracted meshes are guaranteed to be continuous and manifold. The key components of OctFusion are the octree-based latent representation and the accompanying diffusion models. The representation combines the benefits of both implicit neural representations and explicit spatial octrees and is learned with an octree-based variational autoencoder. The proposed diffusion model is a unified multi-scale U-Net that enables weights and computation sharing across different octree levels and avoids the complexity of widely used cascaded diffusion schemes. We verify the effectiveness of OctFusion on the ShapeNet and Objaverse datasets and achieve state-of-the-art performances on shape generation tasks. We demonstrate that OctFusion is extendable and flexible by generating high-quality color fields for textured mesh generation and high-quality 3D shapes conditioned on text prompts, sketches, or category labels. Our code and pre-trained models are available at \url{https://github.com/octree-nn/octfusion}.
Abstract:Recent single-view 3D generative methods have made significant advancements by leveraging knowledge distilled from extensive 3D object datasets. However, challenges persist in the synthesis of 3D scenes from a single view, primarily due to the complexity of real-world environments and the limited availability of high-quality prior resources. In this paper, we introduce a novel approach called Pano2Room, designed to automatically reconstruct high-quality 3D indoor scenes from a single panoramic image. These panoramic images can be easily generated using a panoramic RGBD inpainter from captures at a single location with any camera. The key idea is to initially construct a preliminary mesh from the input panorama, and iteratively refine this mesh using a panoramic RGBD inpainter while collecting photo-realistic 3D-consistent pseudo novel views. Finally, the refined mesh is converted into a 3D Gaussian Splatting field and trained with the collected pseudo novel views. This pipeline enables the reconstruction of real-world 3D scenes, even in the presence of large occlusions, and facilitates the synthesis of photo-realistic novel views with detailed geometry. Extensive qualitative and quantitative experiments have been conducted to validate the superiority of our method in single-panorama indoor novel synthesis compared to the state-of-the-art. Our code and data are available at \url{https://github.com/TrickyGo/Pano2Room}.
Abstract:How to automatically transfer the dynamic texture of a given video to the target still image is a challenging and ongoing problem. In this paper, we propose to handle this task via a simple yet effective model that utilizes both PatchMatch and Transformers. The key idea is to decompose the task of dynamic texture transfer into two stages, where the start frame of the target video with the desired dynamic texture is synthesized in the first stage via a distance map guided texture transfer module based on the PatchMatch algorithm. Then, in the second stage, the synthesized image is decomposed into structure-agnostic patches, according to which their corresponding subsequent patches can be predicted by exploiting the powerful capability of Transformers equipped with VQ-VAE for processing long discrete sequences. After getting all those patches, we apply a Gaussian weighted average merging strategy to smoothly assemble them into each frame of the target stylized video. Experimental results demonstrate the effectiveness and superiority of the proposed method in dynamic texture transfer compared to the state of the art.
Abstract:We present En3D, an enhanced generative scheme for sculpting high-quality 3D human avatars. Unlike previous works that rely on scarce 3D datasets or limited 2D collections with imbalanced viewing angles and imprecise pose priors, our approach aims to develop a zero-shot 3D generative scheme capable of producing visually realistic, geometrically accurate and content-wise diverse 3D humans without relying on pre-existing 3D or 2D assets. To address this challenge, we introduce a meticulously crafted workflow that implements accurate physical modeling to learn the enhanced 3D generative model from synthetic 2D data. During inference, we integrate optimization modules to bridge the gap between realistic appearances and coarse 3D shapes. Specifically, En3D comprises three modules: a 3D generator that accurately models generalizable 3D humans with realistic appearance from synthesized balanced, diverse, and structured human images; a geometry sculptor that enhances shape quality using multi-view normal constraints for intricate human anatomy; and a texturing module that disentangles explicit texture maps with fidelity and editability, leveraging semantical UV partitioning and a differentiable rasterizer. Experimental results show that our approach significantly outperforms prior works in terms of image quality, geometry accuracy and content diversity. We also showcase the applicability of our generated avatars for animation and editing, as well as the scalability of our approach for content-style free adaptation.
Abstract:Single-image novel view synthesis is a challenging and ongoing problem that aims to generate an infinite number of consistent views from a single input image. Although significant efforts have been made to advance the quality of generated novel views, less attention has been paid to the expansion of the underlying scene representation, which is crucial to the generation of realistic novel view images. This paper proposes SinMPI, a novel method that uses an expanded multiplane image (MPI) as the 3D scene representation to significantly expand the perspective range of MPI and generate high-quality novel views from a large multiplane space. The key idea of our method is to use Stable Diffusion to generate out-of-view contents, project all scene contents into an expanded multiplane image according to depths predicted by monocular depth estimators, and then optimize the multiplane image under the supervision of pseudo multi-view data generated by a depth-aware warping and inpainting module. Both qualitative and quantitative experiments have been conducted to validate the superiority of our method to the state of the art. Our code and data are available at https://github.com/TrickyGo/SinMPI.
Abstract:Few-shot font generation, especially for Chinese calligraphy fonts, is a challenging and ongoing problem. With the help of prior knowledge that is mainly based on glyph consistency assumptions, some recently proposed methods can synthesize high-quality Chinese glyph images. However, glyphs in calligraphy font styles often do not meet these assumptions. To address this problem, we propose a novel model, DeepCalliFont, for few-shot Chinese calligraphy font synthesis by integrating dual-modality generative models. Specifically, the proposed model consists of image synthesis and sequence generation branches, generating consistent results via a dual-modality representation learning strategy. The two modalities (i.e., glyph images and writing sequences) are properly integrated using a feature recombination module and a rasterization loss function. Furthermore, a new pre-training strategy is adopted to improve the performance by exploiting large amounts of uni-modality data. Both qualitative and quantitative experiments have been conducted to demonstrate the superiority of our method to other state-of-the-art approaches in the task of few-shot Chinese calligraphy font synthesis. The source code can be found at https://github.com/lsflyt-pku/DeepCalliFont.