Abstract:The Quick-view (QV) technique serves as a primary method for detecting defects within sewerage systems. However, the effectiveness of QV is impeded by the limited visual range of its hardware, resulting in suboptimal image quality for distant portions of the sewer network. Image super-resolution is an effective way to improve image quality and has been applied in a variety of scenes. However, research on super-resolution for sewer images remains considerably unexplored. In response, this study leverages the inherent depth relationships present within QV images and introduces a novel Depth-guided, Reference-based Super-Resolution framework denoted as DSRNet. It comprises two core components: a depth extraction module and a depth information matching module (DMM). DSRNet utilizes the adjacent frames of the low-resolution image as reference images and helps them recover texture information based on the correlation. By combining these modules, the integration of depth priors significantly enhances both visual quality and performance benchmarks. Besides, in pursuit of computational efficiency and compactness, our paper introduces a super-resolution knowledge distillation model based on an attention mechanism. This mechanism facilitates the acquisition of feature similarity between a more complex teacher model and a streamlined student model, the latter being a lightweight version of DSRNet. Experimental results demonstrate that DSRNet significantly improves PSNR and SSIM compared with other methods. This study also conducts experiments on sewer defect semantic segmentation, object detection, and classification on the Pipe dataset and Sewer-ML dataset. Experiments show that the method can improve the performance of low-resolution sewer images in these tasks.
Abstract:Generative Flow Networks (GFlowNets) are probabilistic models predicated on Markov flows, employing specific amortization algorithms to learn stochastic policies that generate compositional substances including biomolecules, chemical materials, and more. Demonstrating formidable prowess in generating high-performance biochemical molecules, GFlowNets accelerate the discovery of scientific substances, effectively circumventing the time-consuming, labor-intensive, and costly shortcomings intrinsic to conventional material discovery. However, previous work often struggles to accumulate exploratory experience and is prone to becoming disoriented within expansive sampling spaces. Attempts to address this issue, such as LS-GFN, are limited to local greedy searches and lack broader global adjustments. This paper introduces a novel GFlowNets variant, the Dynamic Backtracking GFN (DB-GFN), which enhances the adaptability of decision-making steps through a reward-based dynamic backtracking mechanism. DB-GFN permits backtracking during the network construction process according to the current state's reward value, thus correcting disadvantageous decisions and exploring alternative pathways during the exploration process. Applied to generative tasks of biochemical molecules and genetic material sequences, DB-GFN surpasses existing GFlowNets models and traditional reinforcement learning methods in terms of sample quality, exploration sample quantity, and training convergence speed. Furthermore, the orthogonal nature of DB-GFN suggests its potential as a powerful tool for future improvements in GFlowNets, with the promise of integrating with other strategies to achieve more efficient search performance.
Abstract:Novel-view synthesis with sparse input views is important for real-world applications like AR/VR and autonomous driving. Recent methods have integrated depth information into NeRFs for sparse input synthesis, leveraging depth prior for geometric and spatial understanding. However, most existing works tend to overlook inaccuracies within depth maps and have low time efficiency. To address these issues, we propose a depth-guided robust and fast point cloud fusion NeRF for sparse inputs. We perceive radiance fields as an explicit voxel grid of features. A point cloud is constructed for each input view, characterized within the voxel grid using matrices and vectors. We accumulate the point cloud of each input view to construct the fused point cloud of the entire scene. Each voxel determines its density and appearance by referring to the point cloud of the entire scene. Through point cloud fusion and voxel grid fine-tuning, inaccuracies in depth values are refined or substituted by those from other views. Moreover, our method can achieve faster reconstruction and greater compactness through effective vector-matrix decomposition. Experimental results underline the superior performance and time efficiency of our approach compared to state-of-the-art baselines.
Abstract:Surface defect inspection plays an important role in the process of industrial manufacture and production. Though Convolutional Neural Network (CNN) based defect inspection methods have made huge leaps, they still confront a lot of challenges such as defect scale variation, complex background, low contrast, and so on. To address these issues, we propose a joint attention-guided feature fusion network (JAFFNet) for saliency detection of surface defects based on the encoder-decoder network. JAFFNet mainly incorporates a joint attention-guided feature fusion (JAFF) module into decoding stages to adaptively fuse low-level and high-level features. The JAFF module learns to emphasize defect features and suppress background noise during feature fusion, which is beneficial for detecting low-contrast defects. In addition, JAFFNet introduces a dense receptive field (DRF) module following the encoder to capture features with rich context information, which helps detect defects of different scales. The JAFF module mainly utilizes a learned joint channel-spatial attention map provided by high-level semantic features to guide feature fusion. The attention map makes the model pay more attention to defect features. The DRF module utilizes a sequence of multi-receptive-field (MRF) units with each taking as inputs all the preceding MRF feature maps and the original input. The obtained DRF features capture rich context information with a large range of receptive fields. Extensive experiments conducted on SD-saliency-900, Magnetic tile, and DAGM 2007 indicate that our method achieves promising performance in comparison with other state-of-the-art methods. Meanwhile, our method reaches a real-time defect detection speed of 66 FPS.
Abstract:Electroencephalogram (EEG) is a non-invasive technique to record bioelectrical signals. Integrating supervised deep learning techniques with EEG signals has recently facilitated automatic analysis across diverse EEG-based tasks. However, the label issues of EEG signals have constrained the development of EEG-based deep models. Obtaining EEG annotations is difficult that requires domain experts to guide collection and labeling, and the variability of EEG signals among different subjects causes significant label shifts. To solve the above challenges, self-supervised learning (SSL) has been proposed to extract representations from unlabeled samples through well-designed pretext tasks. This paper concentrates on integrating SSL frameworks with temporal EEG signals to achieve efficient representation and proposes a systematic review of the SSL for EEG signals. In this paper, 1) we introduce the concept and theory of self-supervised learning and typical SSL frameworks. 2) We provide a comprehensive review of SSL for EEG analysis, including taxonomy, methodology, and technique details of the existing EEG-based SSL frameworks, and discuss the difference between these methods. 3) We investigate the adaptation of the SSL approach to various downstream tasks, including the task description and related benchmark datasets. 4) Finally, we discuss the potential directions for future SSL-EEG research.
Abstract:Despite imperfect score-matching causing drift in training and sampling distributions of diffusion models, recent advances in diffusion-based acoustic models have revolutionized data-sufficient single-speaker Text-to-Speech (TTS) approaches, with Grad-TTS being a prime example. However, the sampling drift problem leads to these approaches struggling in multi-speaker scenarios in practice due to more complex target data distribution compared to single-speaker scenarios. In this paper, we present Multi-GradSpeech, a multi-speaker diffusion-based acoustic models which introduces the Consistent Diffusion Model (CDM) as a generative modeling approach. We enforce the consistency property of CDM during the training process to alleviate the sampling drift problem in the inference stage, resulting in significant improvements in multi-speaker TTS performance. Our experimental results corroborate that our proposed approach can improve the performance of different speakers involved in multi-speaker TTS compared to Grad-TTS, even outperforming the fine-tuning approach. Audio samples are available at https://welkinyang.github.io/multi-gradspeech/
Abstract:This paper introduces a new open-source platform named Muskits for end-to-end music processing, which mainly focuses on end-to-end singing voice synthesis (E2E-SVS). Muskits supports state-of-the-art SVS models, including RNN SVS, transformer SVS, and XiaoiceSing. The design of Muskits follows the style of widely-used speech processing toolkits, ESPnet and Kaldi, for data prepossessing, training, and recipe pipelines. To the best of our knowledge, this toolkit is the first platform that allows a fair and highly-reproducible comparison between several published works in SVS. In addition, we also demonstrate several advanced usages based on the toolkit functionalities, including multilingual training and transfer learning. This paper describes the major framework of Muskits, its functionalities, and experimental results in single-singer, multi-singer, multilingual, and transfer learning scenarios. The toolkit is publicly available at https://github.com/SJTMusicTeam/Muskits.
Abstract:Deep learning based singing voice synthesis (SVS) systems have been demonstrated to flexibly generate singing with better qualities, compared to conventional statistical parametric based methods. However, neural systems are generally data-hungry and have difficulty to reach reasonable singing quality with limited public available training data. In this work, we explore different data augmentation methods to boost the training of SVS systems, including several strategies customized to SVS based on pitch augmentation and mix-up augmentation. To further stabilize the training, we introduce the cycle-consistent training strategy. Extensive experiments on two public singing databases demonstrate that our proposed augmentation methods and the stabilizing training strategy can significantly improve the performance on both objective and subjective evaluations.
Abstract:As an important application form of immersive multimedia services, free-viewpoint video(FVV) enables users with great immersive experience by strong interaction. However, the computational complexity of virtual view synthesis algorithms poses a significant challenge to the real-time performance of an FVV system. Furthermore, the individuality of user interaction makes it difficult to serve multiple users simultaneously for a system with conventional architecture. In this paper, we novelly introduce a CNN-based view interpolation algorithm to synthesis dense virtual views in real time. Based on this, we also build an end-to-end live free-viewpoint system with a multi-user oriented streaming strategy. Our system can utilize a single edge server to serve multiple users at the same time without having to bring a large view synthesis load on the client side. We analyze the whole system and show that our approaches give the user a pleasant immersive experience, in terms of both visual quality and latency.
Abstract:The neural network (NN) based singing voice synthesis (SVS) systems require sufficient data to train well. However, due to high data acquisition and annotation cost, we often encounter data limitation problem in building SVS systems. The NN based models are prone to over-fitting due to data scarcity. In this work, we propose a Perceptual Entropy (PE) loss derived from a psycho-acoustic hearing model to regularize the network. With a one-hour open-source singing voice database, we explore the impact of the PE loss on various mainstream sequence-to-sequence models, including the RNN-based model, transformer-based model, and conformer-based model. Our experiments show that the PE loss can mitigate the over-fitting problem and significantly improve the synthesized singing quality reflected in objective and subjective evaluations. Furthermore, incorporating the PE loss in model training is shown to help the F0-contour and high-frequency-band spectrum prediction.