Tony
Abstract:GPT-4o is an autoregressive omni model that accepts as input any combination of text, audio, image, and video, and generates any combination of text, audio, and image outputs. It's trained end-to-end across text, vision, and audio, meaning all inputs and outputs are processed by the same neural network. GPT-4o can respond to audio inputs in as little as 232 milliseconds, with an average of 320 milliseconds, which is similar to human response time in conversation. It matches GPT-4 Turbo performance on text in English and code, with significant improvement on text in non-English languages, while also being much faster and 50\% cheaper in the API. GPT-4o is especially better at vision and audio understanding compared to existing models. In line with our commitment to building AI safely and consistent with our voluntary commitments to the White House, we are sharing the GPT-4o System Card, which includes our Preparedness Framework evaluations. In this System Card, we provide a detailed look at GPT-4o's capabilities, limitations, and safety evaluations across multiple categories, focusing on speech-to-speech while also evaluating text and image capabilities, and measures we've implemented to ensure the model is safe and aligned. We also include third-party assessments on dangerous capabilities, as well as discussion of potential societal impacts of GPT-4o's text and vision capabilities.
Abstract:Model adaptation is crucial to handle the discrepancy between proxy training data and actual users data received. To effectively perform adaptation, textual data of users is typically stored on servers or their local devices, where downstream natural language processing (NLP) models can be directly trained using such in-domain data. However, this might raise privacy and security concerns due to the extra risks of exposing user information to adversaries. Replacing identifying information in textual data with a generic marker has been recently explored. In this work, we leverage large language models (LLMs) to suggest substitutes of masked tokens and have their effectiveness evaluated on downstream language modeling tasks. Specifically, we propose multiple pre-trained and fine-tuned LLM-based approaches and perform empirical studies on various datasets for the comparison of these methods. Experimental results show that models trained on the obfuscation corpora are able to achieve comparable performance with the ones trained on the original data without privacy-preserving token masking.
Abstract:With the emergence of automatic speech recognition (ASR) models, converting the spoken form text (from ASR) to the written form is in urgent need. This inverse text normalization (ITN) problem attracts the attention of researchers from various fields. Recently, several works show that data-driven ITN methods can output high-quality written form text. Due to the scarcity of labeled spoken-written datasets, the studies on non-English data-driven ITN are quite limited. In this work, we propose a language-agnostic data-driven ITN framework to fill this gap. Specifically, we leverage the data augmentation in conjunction with neural machine translated data for low resource languages. Moreover, we design an evaluation method for language agnostic ITN model when only English data is available. Our empirical evaluation shows this language agnostic modeling approach is effective for low resource languages while preserving the performance for high resource languages.
Abstract:Contrastive learning has been used to learn a high-quality representation of the image in computer vision. However, contrastive learning is not widely utilized in natural language processing due to the lack of a general method of data augmentation for text data. In this work, we explore the method of employing contrastive learning to improve the text representation from the BERT model for relation extraction. The key knob of our framework is a unique contrastive pre-training step tailored for the relation extraction tasks by seamlessly integrating linguistic knowledge into the data augmentation. Furthermore, we investigate how large-scale data constructed from the external knowledge bases can enhance the generality of contrastive pre-training of BERT. The experimental results on three relation extraction benchmark datasets demonstrate that our method can improve the BERT model representation and achieve state-of-the-art performance. In addition, we explore the interpretability of models by showing that BERT with contrastive pre-training relies more on rationales for prediction. Our code and data are publicly available at: https://github.com/udel-biotm-lab/BERT-CLRE.
Abstract:Human beings can quickly adapt to environmental changes by leveraging learning experience. However, adapting deep neural networks to dynamic environments by machine learning algorithms remains a challenge. To better understand this issue, we study the problem of continual domain adaptation, where the model is presented with a labelled source domain and a sequence of unlabelled target domains. The obstacles in this problem are both domain shift and catastrophic forgetting. We propose Gradient Regularized Contrastive Learning (GRCL) to solve the obstacles. At the core of our method, gradient regularization plays two key roles: (1) enforcing the gradient not to harm the discriminative ability of source features which can, in turn, benefit the adaptation ability of the model to target domains; (2) constraining the gradient not to increase the classification loss on old target domains, which enables the model to preserve the performance on old target domains when adapting to an in-coming target domain. Experiments on Digits, DomainNet and Office-Caltech benchmarks demonstrate the strong performance of our approach when compared to the other state-of-the-art methods.
Abstract:With the explosive growth of biomedical literature, designing automatic tools to extract information from the literature has great significance in biomedical research. Recently, transformer-based BERT models adapted to the biomedical domain have produced leading results. However, all the existing BERT models for relation classification only utilize partial knowledge from the last layer. In this paper, we will investigate the method of utilizing the entire layer in the fine-tuning process of BERT model. To the best of our knowledge, we are the first to explore this method. The experimental results illustrate that our method improves the BERT model performance and outperforms the state-of-the-art methods on three benchmark datasets for different relation extraction tasks. In addition, further analysis indicates that the key knowledge about the relations can be learned from the last layer of BERT model.
Abstract:Several multi-modality representation learning approaches such as LXMERT and ViLBERT have been proposed recently. Such approaches can achieve superior performance due to the high-level semantic information captured during large-scale multimodal pretraining. However, as ViLBERT and LXMERT adopt visual region regression and classification loss, they often suffer from domain gap and noisy label problems, based on the visual features having been pretrained on the Visual Genome dataset. To overcome these issues, we propose unbiased Contrastive Visual-Linguistic Pretraining (CVLP), which constructs a visual self-supervised loss built upon contrastive learning. We evaluate CVLP on several down-stream tasks, including VQA, GQA and NLVR2 to validate the superiority of contrastive learning on multi-modality representation learning. Our code is available at: https://github.com/ArcherYunDong/CVLP-.
Abstract:Adversarial training is a technique of improving model performance by involving adversarial examples in the training process. In this paper, we investigate adversarial training with multiple adversarial examples to benefit the relation extraction task. We also apply adversarial training technique in semi-supervised scenarios to utilize unlabeled data. The evaluation results on protein-protein interaction and protein subcellular localization task illustrate adversarial training provides improvement on the supervised model, and is also effective on involving unlabeled data in the semi-supervised training case. In addition, our method achieves state-of-the-art performance on two benchmarking datasets.
Abstract:Real-world object detectors are often challenged by the domain gaps between different datasets. In this work, we present the Conditional Domain Normalization (CDN) to bridge the domain gap. CDN is designed to encode different domain inputs into a shared latent space, where the features from different domains carry the same domain attribute. To achieve this, we first disentangle the domain-specific attribute out of the semantic features from one domain via a domain embedding module, which learns a domain-vector to characterize the corresponding domain attribute information. Then this domain-vector is used to encode the features from another domain through a conditional normalization, resulting in different domains' features carrying the same domain attribute. We incorporate CDN into various convolution stages of an object detector to adaptively address the domain shifts of different level's representation. In contrast to existing adaptation works that conduct domain confusion learning on semantic features to remove domain-specific factors, CDN aligns different domain distributions by modulating the semantic features of one domain conditioned on the learned domain-vector of another domain. Extensive experiments show that CDN outperforms existing methods remarkably on both real-to-real and synthetic-to-real adaptation benchmarks, including 2D image detection and 3D point cloud detection.