Abstract:We introduce LOcc, an effective and generalizable framework for open-vocabulary occupancy (OVO) prediction. Previous approaches typically supervise the networks through coarse voxel-to-text correspondences via image features as intermediates or noisy and sparse correspondences from voxel-based model-view projections. To alleviate the inaccurate supervision, we propose a semantic transitive labeling pipeline to generate dense and finegrained 3D language occupancy ground truth. Our pipeline presents a feasible way to dig into the valuable semantic information of images, transferring text labels from images to LiDAR point clouds and utimately to voxels, to establish precise voxel-to-text correspondences. By replacing the original prediction head of supervised occupancy models with a geometry head for binary occupancy states and a language head for language features, LOcc effectively uses the generated language ground truth to guide the learning of 3D language volume. Through extensive experiments, we demonstrate that our semantic transitive labeling pipeline can produce more accurate pseudo-labeled ground truth, diminishing labor-intensive human annotations. Additionally, we validate LOcc across various architectures, where all models consistently outperform state-ofthe-art zero-shot occupancy prediction approaches on the Occ3D-nuScenes dataset. Notably, even based on the simpler BEVDet model, with an input resolution of 256 * 704,Occ-BEVDet achieves an mIoU of 20.29, surpassing previous approaches that rely on temporal images, higher-resolution inputs, or larger backbone networks. The code for the proposed method is available at https://github.com/pkqbajng/LOcc.
Abstract:Multi-modality fusion is proven an effective method for 3d perception for autonomous driving. However, most current multi-modality fusion pipelines for LiDAR semantic segmentation have complicated fusion mechanisms. Point painting is a quite straight forward method which directly bind LiDAR points with visual information. Unfortunately, previous point painting like methods suffer from projection error between camera and LiDAR. In our experiments, we find that this projection error is the devil in point painting. As a result of that, we propose a depth aware point painting mechanism, which significantly boosts the multi-modality fusion. Apart from that, we take a deeper look at the desired visual feature for LiDAR to operate semantic segmentation. By Lifting Visual Information as Cue, LVIC ranks 1st on nuScenes LiDAR semantic segmentation benchmark. Our experiments show the robustness and effectiveness. Codes would be make publicly available soon.
Abstract:This paper describes the FlySpeech speaker diarization system submitted to the second \textbf{M}ultimodal \textbf{I}nformation Based \textbf{S}peech \textbf{P}rocessing~(\textbf{MISP}) Challenge held in ICASSP 2022. We develop an end-to-end audio-visual speaker diarization~(AVSD) system, which consists of a lip encoder, a speaker encoder, and an audio-visual decoder. Specifically, to mitigate the degradation of diarization performance caused by separate training, we jointly train the speaker encoder and the audio-visual decoder. In addition, we leverage the large-data pretrained speaker extractor to initialize the speaker encoder.
Abstract:This paper describes the TSUP team's submission to the ISCSLP 2022 conversational short-phrase speaker diarization (CSSD) challenge which particularly focuses on short-phrase conversations with a new evaluation metric called conversational diarization error rate (CDER). In this challenge, we explore three kinds of typical speaker diarization systems, which are spectral clustering(SC) based diarization, target-speaker voice activity detection(TS-VAD) and end-to-end neural diarization(EEND) respectively. Our major findings are summarized as follows. First, the SC approach is more favored over the other two approaches under the new CDER metric. Second, tuning on hyperparameters is essential to CDER for all three types of speaker diarization systems. Specifically, CDER becomes smaller when the length of sub-segments setting longer. Finally, multi-system fusion through DOVER-LAP will worsen the CDER metric on the challenge data. Our submitted SC system eventually ranks the third place in the challenge.
Abstract:Deep learning utilizing deep neural networks (DNNs) has achieved a lot of success recently in many important areas such as computer vision, natural language processing, and recommendation systems. The lack of convexity for DNNs has been seen as a major disadvantage of many optimization methods, such as stochastic gradient descent, which greatly reduces the genelization of neural network applications. We realize that the convexity make sense in the neural network and propose the exponential multilayer neural network (EMLP), a class of parameter convex neural network (PCNN) which is convex with regard to the parameters of the neural network under some conditions that can be realized. Besides, we propose the convexity metric for the two-layer EGCN and test the accuracy when the convexity metric changes. For late experiments, we use the same architecture to make the exponential graph convolutional network (EGCN) and do the experiment on the graph classificaion dataset in which our model EGCN performs better than the graph convolutional network (GCN) and the graph attention network (GAT).
Abstract:Most real-world networks suffer from incompleteness or incorrectness, which is an inherent attribute to real-world datasets. As a consequence, those downstream machine learning tasks in complex network like community detection methods may yield less satisfactory results, i.e., a proper preprocessing measure is required here. To address this issue, in this paper, we design a new community attribute based link prediction strategy HAP and propose a two-step community enhancement algorithm with automatic evolution process based on HAP. This paper aims at providing a community enhancement measure through adding links to clarify ambiguous community structures. The HAP method takes the neighbourhood uncertainty and Shannon entropy to identify boundary nodes, and establishes links by considering the nodes' community attributes and community size at the same time. The experimental results on twelve real-world datasets with ground truth community indicate that the proposed link prediction method outperforms other baseline methods and the enhancement of community follows the expected evolution process.