Abstract:Determining causal effects of temporal multi-intervention assists decision-making. Restricted by time-varying bias, selection bias, and interactions of multiple interventions, the disentanglement and estimation of multiple treatment effects from individual temporal data is still rare. To tackle these challenges, we propose a comprehensive framework of temporal counterfactual forecasting from an individual multiple treatment perspective (TCFimt). TCFimt constructs adversarial tasks in a seq2seq framework to alleviate selection and time-varying bias and designs a contrastive learning-based block to decouple a mixed treatment effect into separated main treatment effects and causal interactions which further improves estimation accuracy. Through implementing experiments on two real-world datasets from distinct fields, the proposed method shows satisfactory performance in predicting future outcomes with specific treatments and in choosing optimal treatment type and timing than state-of-the-art methods.
Abstract:Most real-world networks suffer from incompleteness or incorrectness, which is an inherent attribute to real-world datasets. As a consequence, those downstream machine learning tasks in complex network like community detection methods may yield less satisfactory results, i.e., a proper preprocessing measure is required here. To address this issue, in this paper, we design a new community attribute based link prediction strategy HAP and propose a two-step community enhancement algorithm with automatic evolution process based on HAP. This paper aims at providing a community enhancement measure through adding links to clarify ambiguous community structures. The HAP method takes the neighbourhood uncertainty and Shannon entropy to identify boundary nodes, and establishes links by considering the nodes' community attributes and community size at the same time. The experimental results on twelve real-world datasets with ground truth community indicate that the proposed link prediction method outperforms other baseline methods and the enhancement of community follows the expected evolution process.
Abstract:Most existing popular methods for learning graph embedding only consider fixed-order global structural features and lack structures hierarchical representation. To address this weakness, we propose a novel graph embedding algorithm named GraphCSC that realizes classification based on skeleton information using fixed-order structures learned in anonymous random walks manner, and component information using different size subgraphs. Two graphs are similar if their skeletons and components are both similar, thus in our model, we integrate both of them together into embeddings as graph homogeneity characterization. We demonstrate our model on different datasets in comparison with a comprehensive list of up-to-date state-of-the-art baselines, and experiments show that our work is superior in real-world graph classification tasks.
Abstract:Graphs are often used to organize data because of their simple topological structure, and therefore play a key role in machine learning. And it turns out that the low-dimensional embedded representation obtained by graph representation learning are extremely useful in various typical tasks, such as node classification, content recommendation and link prediction. However, the existing methods mostly start from the microstructure (i.e., the edges) in the graph, ignoring the mesoscopic structure (high-order local structure). Here, we propose wGCN -- a novel framework that utilizes random walk to obtain the node-specific mesoscopic structures of the graph, and utilizes these mesoscopic structures to reconstruct the graph And organize the characteristic information of the nodes. Our method can effectively generate node embeddings for previously unseen data, which has been proven in a series of experiments conducted on citation networks and social networks (our method has advantages over baseline methods). We believe that combining high-order local structural information can more efficiently explore the potential of the network, which will greatly improve the learning efficiency of graph neural network and promote the establishment of new learning models.
Abstract:The graph structure is a commonly used data storage mode, and it turns out that the low-dimensional embedded representation of nodes in the graph is extremely useful in various typical tasks, such as node classification, link prediction , etc. However, most of the existing approaches start from the binary relationship (i.e., edges) in the graph and have not leveraged the higher order local structure (i.e., motifs) of the graph. Here, we propose mGCMN -- a novel framework which utilizes node feature information and the higher order local structure of the graph to effectively generate node embeddings for previously unseen data. Through research we have found that different types of networks have different key motifs. And the advantages of our method over the baseline methods have been demonstrated in a large number of experiments on citation network and social network datasets. At the same time, a positive correlation between increase of the classification accuracy and the clustering coefficient is revealed. It is believed that using high order structural information can truly manifest the potential of the network, which will greatly improve the learning efficiency of the graph neural network and promote a brand-new learning mode establishment.