Abstract:At-home rehabilitation for post-stroke patients presents significant challenges, as continuous, personalized care is often limited outside clinical settings. Additionally, the absence of comprehensive solutions addressing diverse rehabilitation needs in home environments complicates recovery efforts. Here, we introduce a smart home platform that integrates wearable sensors, ambient monitoring, and large language model (LLM)-powered assistance to provide seamless health monitoring and intelligent support. The system leverages machine learning enabled plantar pressure arrays for motor recovery assessment (94% classification accuracy), a wearable eye-tracking module for cognitive evaluation, and ambient sensors for precise smart home control (100% operational success, <1 s latency). Additionally, the LLM-powered agent, Auto-Care, offers real-time interventions, such as health reminders and environmental adjustments, enhancing user satisfaction by 29%. This work establishes a fully integrated platform for long-term, personalized rehabilitation, offering new possibilities for managing chronic conditions and supporting aging populations.
Abstract:Temporal network link prediction is an important task in the field of network science, and has a wide range of applications in practical scenarios. Revealing the evolutionary mechanism of the network is essential for link prediction, and how to effectively utilize the historical information for temporal links and efficiently extract the high-order patterns of network structure remains a vital challenge. To address these issues, in this paper, we propose a novel temporal link prediction model with adjusted sigmoid function and 2-simplex structure (TLPSS). The adjusted sigmoid decay mode takes the active, decay and stable states of edges into account, which properly fits the life cycle of information. Moreover, the latent matrix sequence is introduced, which is composed of simplex high-order structure, to enhance the performance of link prediction method since it is highly feasible in sparse network. Combining the life cycle of information and simplex high-order structure, the overall performance of TLPSS is achieved by satisfying the consistency of temporal and structural information in dynamic networks. Experimental results on six real-world datasets demonstrate the effectiveness of TLPSS, and our proposed model improves the performance of link prediction by an average of 15% compared to other baseline methods.
Abstract:Most real-world networks suffer from incompleteness or incorrectness, which is an inherent attribute to real-world datasets. As a consequence, those downstream machine learning tasks in complex network like community detection methods may yield less satisfactory results, i.e., a proper preprocessing measure is required here. To address this issue, in this paper, we design a new community attribute based link prediction strategy HAP and propose a two-step community enhancement algorithm with automatic evolution process based on HAP. This paper aims at providing a community enhancement measure through adding links to clarify ambiguous community structures. The HAP method takes the neighbourhood uncertainty and Shannon entropy to identify boundary nodes, and establishes links by considering the nodes' community attributes and community size at the same time. The experimental results on twelve real-world datasets with ground truth community indicate that the proposed link prediction method outperforms other baseline methods and the enhancement of community follows the expected evolution process.
Abstract:The problem of quickest change detection (QCD) in anonymous heterogeneous sensor networks is studied. There are $n$ heterogeneous sensors and a fusion center. The sensors are clustered into $K$ groups, and different groups follow different data-generating distributions. At some unknown time, an event occurs in the network and changes the data-generating distribution of the sensors. The goal is to detect the change as quickly as possible, subject to false alarm constraints. The anonymous setting is studied, where at each time step, the fusion center receives $n$ unordered samples, and the fusion center does not know which sensor each sample comes from, and thus does not know its exact distribution. A simple optimality proof is first derived for the mixture likelihood ratio test, which was constructed and proved to be optimal for the non-sequential anonymous setting in (Chen and Wang, 2019). For the QCD problem, a mixture CuSum algorithm is further constructed, and is further shown to be optimal under Lorden's criterion. For large networks, a computationally efficient test is proposed and a novel theoretical characterization of its false alarm rate is developed. Numerical results are provided to validate the theoretical results.
Abstract:Adversarially robust learning aims to design algorithms that are robust to small adversarial perturbations on input variables. Beyond the existing studies on the predictive performance to adversarial samples, our goal is to understand statistical properties of adversarially robust estimates and analyze adversarial risk in the setup of linear regression models. By discovering the statistical minimax rate of convergence of adversarially robust estimators, we emphasize the importance of incorporating model information, e.g., sparsity, in adversarially robust learning. Further, we reveal an explicit connection of adversarial and standard estimates, and propose a straightforward two-stage adversarial learning framework, which facilitates to utilize model structure information to improve adversarial robustness. In theory, the consistency of the adversarially robust estimator is proven and its Bahadur representation is also developed for the statistical inference purpose. The proposed estimator converges in a sharp rate under either low-dimensional or sparse scenario. Moreover, our theory confirms two phenomena in adversarially robust learning: adversarial robustness hurts generalization, and unlabeled data help improve the generalization. In the end, we conduct numerical simulations to verify our theory.