Abstract:Memristive associative learning has gained significant attention for its ability to mimic fundamental biological learning mechanisms while maintaining system simplicity. In this work, we introduce a high-order memristive associative learning framework with a biologically realistic structure. By utilizing memristors as synaptic modules and their state information to bridge different orders of associative learning, our design effectively establishes associations between multiple stimuli and replicates the transient nature of high-order associative learning. In Pavlov's classical conditioning experiments, our design achieves a 230% improvement in learning efficiency compared to previous works, with memristor power consumption in the synaptic modules remaining below 11 {\mu}W. In large-scale image recognition tasks, we utilize a 20*20 memristor array to represent images, enabling the system to recognize and label test images with semantic information at 100% accuracy. This scalability across different tasks highlights the framework's potential for a wide range of applications, offering enhanced learning efficiency for current memristor-based neuromorphic systems.
Abstract:Neuromorphic devices, with their distinct advantages in energy efficiency and parallel processing, are pivotal in advancing artificial intelligence applications. Among these devices, memristive transistors have attracted significant attention due to their superior symmetry, stability, and retention characteristics compared to two-terminal memristors. However, the lack of a robust model that accurately captures their complex electrical behavior has hindered further exploration of their potential. In this work, we present the GEneral Memristive transistor model (GEM), a comprehensive voltage-controlled model that addresses this gap. The GEM model incorporates a state-dependent update function, a voltage-controlled moving window function, and a nonlinear current output function, enabling precise representation of the electrical characteristics of memristive transistors. In experiments, the GEM model not only demonstrates a 300% improvement in modeling the memory behavior but also accurately captures the inherent nonlinearities and physical limits of these devices. This advancement significantly enhances the realistic simulation of memristive transistors, thereby facilitating further exploration and application development.
Abstract:We explore the control of stochastic systems with potentially continuous state and action spaces, characterized by the state dynamics $X_{t+1} = f(X_t, A_t, W_t)$. Here, $X$, $A$, and $W$ represent the state, action, and exogenous random noise processes, respectively, with $f$ denoting a known function that describes state transitions. Traditionally, the noise process $\{W_t, t \geq 0\}$ is assumed to be independent and identically distributed, with a distribution that is either fully known or can be consistently estimated. However, the occurrence of distributional shifts, typical in engineering settings, necessitates the consideration of the robustness of the policy. This paper introduces a distributionally robust stochastic control paradigm that accommodates possibly adaptive adversarial perturbation to the noise distribution within a prescribed ambiguity set. We examine two adversary models: current-action-aware and current-action-unaware, leading to different dynamic programming equations. Furthermore, we characterize the optimal finite sample minimax rates for achieving uniform learning of the robust value function across continuum states under both adversary types, considering ambiguity sets defined by $f_k$-divergence and Wasserstein distance. Finally, we demonstrate the applicability of our framework across various real-world settings.
Abstract:Artificial nociceptors, mimicking human-like stimuli perception, are of significance for intelligent robotics to work in hazardous and dynamic scenarios. One of the most essential characteristics of the human nociceptor is its self-adjustable attribute, which indicates that the threshold of determination of a potentially hazardous stimulus relies on environmental knowledge. This critical attribute has been currently omitted, but it is highly desired for artificial nociceptors. Inspired by these shortcomings, this article presents, for the first time, a Self-Directed Channel (SDC) memristor-based self-reconfigurable nociceptor, capable of perceiving hazardous pressure stimuli under different temperatures and demonstrates key features of tactile nociceptors, including 'threshold,' 'no-adaptation,' and 'sensitization.' The maximum amplification of hazardous external stimuli is 1000%, and its response characteristics dynamically adapt to current temperature conditions by automatically altering the generated modulation schemes for the memristor. The maximum difference ratio of the response of memristors at different temperatures is 500%, and this adaptability closely mimics the functions of biological tactile nociceptors, resulting in accurate danger perception in various conditions. Beyond temperature adaptation, this memristor-based nociceptor has the potential to integrate different sensory modalities by applying various sensors, thereby achieving human-like perception capabilities in real-world environments.
Abstract:Memristive neuromorphic systems are designed to emulate human perception and cognition, where the memristor states represent essential historical information to perform both low-level and high-level tasks. However, current systems face challenges with the separation of state modulation and acquisition, leading to undesired time delays that impact real-time performance. To overcome this issue, we introduce a dual-function circuit that concurrently modulates and acquires memristor state information. This is achieved through two key features: 1) a feedback operational amplifier (op-amp) based circuit that ensures precise voltage application on the memristor while converting the passing current into a voltage signal; 2) a division calculation circuit that acquires state information from the modulation voltage and the converted voltage, improving stability by leveraging the intrinsic threshold characteristics of memristors. This circuit has been evaluated in a memristor-based nociceptor and a memristor crossbar, demonstrating exceptional performance. For instance, it achieves mean absolute acquisition errors below 1 {\Omega} during the modulation process in the nociceptor application. These results demonstrate that the proposed circuit can operate at different scales, holding the potential to enhance a wide range of neuromorphic applications.
Abstract:Stochastic computing offers a probabilistic approach to address challenges posed by problems with uncertainty and noise in various fields, particularly machine learning. The realization of stochastic computing, however, faces the limitation of developing reliable stochastic logics. Here, we present stochastic logics development using memristors. Specifically, we integrate memristors into logic circuits to design the stochastic logics, wherein the inherent stochasticity in memristor switching is harnessed to enable stochastic number encoding and processing with well-regulated probabilities and correlations. As a practical application of the stochastic logics, we design a compact stochastic Roberts cross operator for edge detection. Remarkably, the operator demonstrates exceptional contour and texture extractions, even in the presence of 50% noise, and owning to the probabilistic nature and compact design, the operator can consume 95% less computational costs required by conventional binary computing. The results underscore the great potential of our stochastic computing approach as a lightweight local solution to machine learning challenges in autonomous driving, virtual reality, medical diagnosis, industrial automation, and beyond.
Abstract:The partially observable constrained optimization problems (POCOPs) impede data-driven optimization techniques since an infeasible solution of POCOPs can provide little information about the objective as well as the constraints. We endeavor to design an efficient and provable method for expensive POCOPs under the framework of constrained Bayesian optimization. Our method consists of two key components. Firstly, we present an improved design of the acquisition functions that introduces balanced exploration during optimization. We rigorously study the convergence properties of this design to demonstrate its effectiveness. Secondly, we propose a Gaussian process embedding different likelihoods as the surrogate model for a partially observable constraint. This model leads to a more accurate representation of the feasible regions compared to traditional classification-based models. Our proposed method is empirically studied on both synthetic and real-world problems. The results demonstrate the competitiveness of our method for solving POCOPs.
Abstract:Motivated by the need for a robust policy in the face of environment shifts between training and the deployment, we contribute to the theoretical foundation of distributionally robust reinforcement learning (DRRL). This is accomplished through a comprehensive modeling framework centered around distributionally robust Markov decision processes (DRMDPs). This framework obliges the decision maker to choose an optimal policy under the worst-case distributional shift orchestrated by an adversary. By unifying and extending existing formulations, we rigorously construct DRMDPs that embraces various modeling attributes for both the decision maker and the adversary. These attributes include adaptability granularity, exploring history-dependent, Markov, and Markov time-homogeneous decision maker and adversary dynamics. Additionally, we delve into the flexibility of shifts induced by the adversary, examining SA and S-rectangularity. Within this DRMDP framework, we investigate conditions for the existence or absence of the dynamic programming principle (DPP). From an algorithmic standpoint, the existence of DPP holds significant implications, as the vast majority of existing data and computationally efficiency RL algorithms are reliant on the DPP. To study its existence, we comprehensively examine combinations of controller and adversary attributes, providing streamlined proofs grounded in a unified methodology. We also offer counterexamples for settings in which a DPP with full generality is absent.
Abstract:We settle the sample complexity of policy learning for the maximization of the long run average reward associated with a uniformly ergodic Markov decision process (MDP), assuming a generative model. In this context, the existing literature provides a sample complexity upper bound of $\widetilde O(|S||A|t_{\text{mix}}^2 \epsilon^{-2})$ and a lower bound of $\Omega(|S||A|t_{\text{mix}} \epsilon^{-2})$. In these expressions, $|S|$ and $|A|$ denote the cardinalities of the state and action spaces respectively, $t_{\text{mix}}$ serves as a uniform upper limit for the total variation mixing times, and $\epsilon$ signifies the error tolerance. Therefore, a notable gap of $t_{\text{mix}}$ still remains to be bridged. Our primary contribution is to establish an estimator for the optimal policy of average reward MDPs with a sample complexity of $\widetilde O(|S||A|t_{\text{mix}}\epsilon^{-2})$, effectively reaching the lower bound in the literature. This is achieved by combining algorithmic ideas in Jin and Sidford (2021) with those of Li et al. (2020).
Abstract:Expecting intelligent machines to efficiently work in real world requires a new method to understand unstructured information in unknown environments with good accuracy, scalability and generalization, like human. Here, a memristive neural computing based perceptual signal differential processing and learning method for intelligent machines is presented, via extracting main features of environmental information and applying associated encoded stimuli to memristors, we successfully obtain human-like ability in processing unstructured environmental information, such as amplification (>720%) and adaptation (<50%) of mechanical stimuli. The method also exhibits good scalability and generalization, validated in two typical applications of intelligent machines: object grasping and autonomous driving. In the former, a robot hand experimentally realizes safe and stable grasping, through learning unknown object features (e.g., sharp corner and smooth surface) with a single memristor in 1 ms. In the latter, the decision-making information of 10 unstructured environments in autonomous driving (e.g., overtaking cars, pedestrians) are accurately (94%) extracted with a 40x25 memristor array. By mimicking the intrinsic nature of human low-level perception mechanisms in electronic memristive neural circuits, the proposed method is adaptable to diverse sensing technologies, helping intelligent machines to generate smart high-level decisions in real world.