Abstract:Memristive associative learning has gained significant attention for its ability to mimic fundamental biological learning mechanisms while maintaining system simplicity. In this work, we introduce a high-order memristive associative learning framework with a biologically realistic structure. By utilizing memristors as synaptic modules and their state information to bridge different orders of associative learning, our design effectively establishes associations between multiple stimuli and replicates the transient nature of high-order associative learning. In Pavlov's classical conditioning experiments, our design achieves a 230% improvement in learning efficiency compared to previous works, with memristor power consumption in the synaptic modules remaining below 11 {\mu}W. In large-scale image recognition tasks, we utilize a 20*20 memristor array to represent images, enabling the system to recognize and label test images with semantic information at 100% accuracy. This scalability across different tasks highlights the framework's potential for a wide range of applications, offering enhanced learning efficiency for current memristor-based neuromorphic systems.
Abstract:Memristive neuromorphic systems are designed to emulate human perception and cognition, where the memristor states represent essential historical information to perform both low-level and high-level tasks. However, current systems face challenges with the separation of state modulation and acquisition, leading to undesired time delays that impact real-time performance. To overcome this issue, we introduce a dual-function circuit that concurrently modulates and acquires memristor state information. This is achieved through two key features: 1) a feedback operational amplifier (op-amp) based circuit that ensures precise voltage application on the memristor while converting the passing current into a voltage signal; 2) a division calculation circuit that acquires state information from the modulation voltage and the converted voltage, improving stability by leveraging the intrinsic threshold characteristics of memristors. This circuit has been evaluated in a memristor-based nociceptor and a memristor crossbar, demonstrating exceptional performance. For instance, it achieves mean absolute acquisition errors below 1 {\Omega} during the modulation process in the nociceptor application. These results demonstrate that the proposed circuit can operate at different scales, holding the potential to enhance a wide range of neuromorphic applications.
Abstract:Fundus diseases are major causes of visual impairment and blindness worldwide, especially in underdeveloped regions, where the shortage of ophthalmologists hinders timely diagnosis. AI-assisted fundus image analysis has several advantages, such as high accuracy, reduced workload, and improved accessibility, but it requires a large amount of expert-annotated data to build reliable models. To address this dilemma, we propose a general self-supervised machine learning framework that can handle diverse fundus diseases from unlabeled fundus images. Our method's AUC surpasses existing supervised approaches by 15.7%, and even exceeds performance of a single human expert. Furthermore, our model adapts well to various datasets from different regions, races, and heterogeneous image sources or qualities from multiple cameras or devices. Our method offers a label-free general framework to diagnose fundus diseases, which could potentially benefit telehealth programs for early screening of people at risk of vision loss.
Abstract:Expecting intelligent machines to efficiently work in real world requires a new method to understand unstructured information in unknown environments with good accuracy, scalability and generalization, like human. Here, a memristive neural computing based perceptual signal differential processing and learning method for intelligent machines is presented, via extracting main features of environmental information and applying associated encoded stimuli to memristors, we successfully obtain human-like ability in processing unstructured environmental information, such as amplification (>720%) and adaptation (<50%) of mechanical stimuli. The method also exhibits good scalability and generalization, validated in two typical applications of intelligent machines: object grasping and autonomous driving. In the former, a robot hand experimentally realizes safe and stable grasping, through learning unknown object features (e.g., sharp corner and smooth surface) with a single memristor in 1 ms. In the latter, the decision-making information of 10 unstructured environments in autonomous driving (e.g., overtaking cars, pedestrians) are accurately (94%) extracted with a 40x25 memristor array. By mimicking the intrinsic nature of human low-level perception mechanisms in electronic memristive neural circuits, the proposed method is adaptable to diverse sensing technologies, helping intelligent machines to generate smart high-level decisions in real world.