Abstract:The roadmap is organized into several thematic sections, outlining current computing challenges, discussing the neuromorphic computing approach, analyzing mature and currently utilized technologies, providing an overview of emerging technologies, addressing material challenges, exploring novel computing concepts, and finally examining the maturity level of emerging technologies while determining the next essential steps for their advancement.
Abstract:Structured, or tabular, data is the most common format in data science. While deep learning models have proven formidable in learning from unstructured data such as images or speech, they are less accurate than simpler approaches when learning from tabular data. In contrast, modern tree-based Machine Learning (ML) models shine in extracting relevant information from structured data. An essential requirement in data science is to reduce model inference latency in cases where, for example, models are used in a closed loop with simulation to accelerate scientific discovery. However, the hardware acceleration community has mostly focused on deep neural networks and largely ignored other forms of machine learning. Previous work has described the use of an analog content addressable memory (CAM) component for efficiently mapping random forests. In this work, we focus on an overall analog-digital architecture implementing a novel increased precision analog CAM and a programmable network on chip allowing the inference of state-of-the-art tree-based ML models, such as XGBoost and CatBoost. Results evaluated in a single chip at 16nm technology show 119x lower latency at 9740x higher throughput compared with a state-of-the-art GPU, with a 19W peak power consumption.
Abstract:Machine learning has been getting a large attention in the recent years, as a tool to process big data generated by ubiquitous sensors in our daily life. High speed, low energy computing machines are in demand to enable real-time artificial intelligence at the edge, i.e., without the support of a remote frame server in the cloud. Such requirements challenge the complementary metal-oxide-semiconductor (CMOS) technology, which is limited by the Moore's law approaching its end and the communication bottleneck in conventional computing architecture. Novel computing concepts, architectures and devices are thus strongly needed to accelerate data-intensive applications. Here we show a crosspoint resistive memory circuit with feedback configuration can execute linear regression and logistic regression in just one step by computing the pseudoinverse matrix of the data within the memory. The most elementary learning operation, that is the regression of a sequence of data and the classification of a set of data, can thus be executed in one single computational step by the novel technology. One-step learning is further supported by simulations of the prediction of the cost of a house in Boston and the training of a 2-layer neural network for MNIST digit recognition. The results are all obtained in one computational step, thanks to the physical, parallel, and analog computing within the crosspoint array.