Alex
Abstract:Vision-based object tracking is a critical component for achieving autonomous aerial navigation, particularly for obstacle avoidance. Neuromorphic Dynamic Vision Sensors (DVS) or event cameras, inspired by biological vision, offer a promising alternative to conventional frame-based cameras. These cameras can detect changes in intensity asynchronously, even in challenging lighting conditions, with a high dynamic range and resistance to motion blur. Spiking neural networks (SNNs) are increasingly used to process these event-based signals efficiently and asynchronously. Meanwhile, physics-based artificial intelligence (AI) provides a means to incorporate system-level knowledge into neural networks via physical modeling. This enhances robustness, energy efficiency, and provides symbolic explainability. In this work, we present a neuromorphic navigation framework for autonomous drone navigation. The focus is on detecting and navigating through moving gates while avoiding collisions. We use event cameras for detecting moving objects through a shallow SNN architecture in an unsupervised manner. This is combined with a lightweight energy-aware physics-guided neural network (PgNN) trained with depth inputs to predict optimal flight times, generating near-minimum energy paths. The system is implemented in the Gazebo simulator and integrates a sensor-fused vision-to-planning neuro-symbolic framework built with the Robot Operating System (ROS) middleware. This work highlights the future potential of integrating event-based vision with physics-guided planning for energy-efficient autonomous navigation, particularly for low-latency decision-making.
Abstract:Autonomous edge computing in robotics, smart cities, and autonomous vehicles relies on the seamless integration of sensing, processing, and actuation for real-time decision-making in dynamic environments. At its core is the sensing-to-action loop, which iteratively aligns sensor inputs with computational models to drive adaptive control strategies. These loops can adapt to hyper-local conditions, enhancing resource efficiency and responsiveness, but also face challenges such as resource constraints, synchronization delays in multi-modal data fusion, and the risk of cascading errors in feedback loops. This article explores how proactive, context-aware sensing-to-action and action-to-sensing adaptations can enhance efficiency by dynamically adjusting sensing and computation based on task demands, such as sensing a very limited part of the environment and predicting the rest. By guiding sensing through control actions, action-to-sensing pathways can improve task relevance and resource use, but they also require robust monitoring to prevent cascading errors and maintain reliability. Multi-agent sensing-action loops further extend these capabilities through coordinated sensing and actions across distributed agents, optimizing resource use via collaboration. Additionally, neuromorphic computing, inspired by biological systems, provides an efficient framework for spike-based, event-driven processing that conserves energy, reduces latency, and supports hierarchical control--making it ideal for multi-agent optimization. This article highlights the importance of end-to-end co-design strategies that align algorithmic models with hardware and environmental dynamics and improve cross-layer interdependencies to improve throughput, precision, and adaptability for energy-efficient edge autonomy in complex environments.
Abstract:The demand for low-power inference and training of deep neural networks (DNNs) on edge devices has intensified the need for algorithms that are both scalable and energy-efficient. While spiking neural networks (SNNs) allow for efficient inference by processing complex spatio-temporal dynamics in an event-driven fashion, training them on resource-constrained devices remains challenging due to the high computational and memory demands of conventional error backpropagation (BP)-based approaches. In this work, we draw inspiration from biological mechanisms such as eligibility traces, spike-timing-dependent plasticity, and neural activity synchronization to introduce TESS, a temporally and spatially local learning rule for training SNNs. Our approach addresses both temporal and spatial credit assignments by relying solely on locally available signals within each neuron, thereby allowing computational and memory overheads to scale linearly with the number of neurons, independently of the number of time steps. Despite relying on local mechanisms, we demonstrate performance comparable to the backpropagation through time (BPTT) algorithm, within $\sim1.4$ accuracy points on challenging computer vision scenarios relevant at the edge, such as the IBM DVS Gesture dataset, CIFAR10-DVS, and temporal versions of CIFAR10, and CIFAR100. Being able to produce comparable performance to BPTT while keeping low time and memory complexity, TESS enables efficient and scalable on-device learning at the edge.
Abstract:The integration of human-intuitive interactions into autonomous systems has been limited. Traditional Natural Language Processing (NLP) systems struggle with context and intent understanding, severely restricting human-robot interaction. Recent advancements in Large Language Models (LLMs) have transformed this dynamic, allowing for intuitive and high-level communication through speech and text, and bridging the gap between human commands and robotic actions. Additionally, autonomous navigation has emerged as a central focus in robotics research, with artificial intelligence (AI) increasingly being leveraged to enhance these systems. However, existing AI-based navigation algorithms face significant challenges in latency-critical tasks where rapid decision-making is critical. Traditional frame-based vision systems, while effective for high-level decision-making, suffer from high energy consumption and latency, limiting their applicability in real-time scenarios. Neuromorphic vision systems, combining event-based cameras and spiking neural networks (SNNs), offer a promising alternative by enabling energy-efficient, low-latency navigation. Despite their potential, real-world implementations of these systems, particularly on physical platforms such as drones, remain scarce. In this work, we present Neuro-LIFT, a real-time neuromorphic navigation framework implemented on a Parrot Bebop2 quadrotor. Leveraging an LLM for natural language processing, Neuro-LIFT translates human speech into high-level planning commands which are then autonomously executed using event-based neuromorphic vision and physics-driven planning. Our framework demonstrates its capabilities in navigating in a dynamic environment, avoiding obstacles, and adapting to human instructions in real-time.
Abstract:Large language models (LLMs) are increasingly attracting the attention of healthcare professionals for their potential to assist in diagnostic assessments, which could alleviate the strain on the healthcare system caused by a high patient load and a shortage of providers. For LLMs to be effective in supporting diagnostic assessments, it is essential that they closely replicate the standard diagnostic procedures used by clinicians. In this paper, we specifically examine the diagnostic assessment processes described in the Patient Health Questionnaire-9 (PHQ-9) for major depressive disorder (MDD) and the Generalized Anxiety Disorder-7 (GAD-7) questionnaire for generalized anxiety disorder (GAD). We investigate various prompting and fine-tuning techniques to guide both proprietary and open-source LLMs in adhering to these processes, and we evaluate the agreement between LLM-generated diagnostic outcomes and expert-validated ground truth. For fine-tuning, we utilize the Mentalllama and Llama models, while for prompting, we experiment with proprietary models like GPT-3.5 and GPT-4o, as well as open-source models such as llama-3.1-8b and mixtral-8x7b.
Abstract:Post-training quantization (PTQ) of large language models (LLMs) holds the promise in reducing the prohibitive computational cost at inference time. Quantization of all weight, activation and key-value (KV) cache tensors to 4-bit without significantly degrading generalizability is challenging, due to the high quantization error caused by extreme outliers in activations. To tackle this problem, we propose ResQ, a PTQ method that pushes further the state-of-the-art. By means of principal component analysis (PCA), it identifies a low-rank subspace (in practice 1/8 of the hidden dimension) in which activation variances are highest, and keep the coefficients within this subspace in high precision, e.g. 8-bit, while quantizing the rest to 4-bit. Within each subspace, invariant random rotation is applied to further suppress outliers. We show that this is a provably optimal mixed precision quantization scheme that minimizes error. With the Llama families of models, we demonstrate that ResQ outperforms recent uniform and mixed precision PTQ methods on a variety of benchmarks, achieving up to 33% lower perplexity on Wikitext than the next best method SpinQuant, and a 2.4x speedup over 16-bit baseline. Code is available at https://github.com/utkarsh-dmx/project-resq.
Abstract:Recently, diffusion models have demonstrated impressive capabilities in text-guided and image-conditioned image generation. However, existing diffusion models cannot simultaneously generate a segmentation map of objects and a corresponding image from the prompt. Previous attempts either generate segmentation maps based on the images or provide maps as input conditions to control image generation, limiting their functionality to given inputs. Incorporating an inherent understanding of the scene layouts can improve the creativity and realism of diffusion models. To address this limitation, we present Panoptic Diffusion Model (PDM), the first model designed to generate both images and panoptic segmentation maps concurrently. PDM bridges the gap between image and text by constructing segmentation layouts that provide detailed, built-in guidance throughout the generation process. This ensures the inclusion of categories mentioned in text prompts and enriches the diversity of segments within the background. We demonstrate the effectiveness of PDM across two architectures: a unified diffusion transformer and a two-stream transformer with a pretrained backbone. To facilitate co-generation with fewer sampling steps, we incorporate a fast diffusion solver into PDM. Additionally, when ground-truth maps are available, PDM can function as a text-guided image-to-image generation model. Finally, we propose a novel metric for evaluating the quality of generated maps and show that PDM achieves state-of-the-art results in image generation with implicit scene control.
Abstract:Spiking Neural Networks (SNNs) with their bio-inspired Leaky Integrate-and-Fire (LIF) neurons inherently capture temporal information. This makes them well-suited for sequential tasks like processing event-based data from Dynamic Vision Sensors (DVS) and event-based speech tasks. Harnessing the temporal capabilities of SNNs requires mitigating vanishing spikes during training, capturing spatio-temporal patterns and enhancing precise spike timing. To address these challenges, we propose TSkips, augmenting SNN architectures with forward and backward skip connections that incorporate explicit temporal delays. These connections capture long-term spatio-temporal dependencies and facilitate better spike flow over long sequences. The introduction of TSkips creates a vast search space of possible configurations, encompassing skip positions and time delay values. To efficiently navigate this search space, this work leverages training-free Neural Architecture Search (NAS) to identify optimal network structures and corresponding delays. We demonstrate the effectiveness of our approach on four event-based datasets: DSEC-flow for optical flow estimation, DVS128 Gesture for hand gesture recognition and Spiking Heidelberg Digits (SHD) and Spiking Speech Commands (SSC) for speech recognition. Our method achieves significant improvements across these datasets: up to 18% reduction in Average Endpoint Error (AEE) on DSEC-flow, 8% increase in classification accuracy on DVS128 Gesture, and up to 8% and 16% higher classification accuracy on SHD and SSC, respectively.
Abstract:Continual learning, or the ability to progressively integrate new concepts, is fundamental to intelligent beings, enabling adaptability in dynamic environments. In contrast, artificial deep neural networks face the challenge of catastrophic forgetting when learning new tasks sequentially. To alleviate the problem of forgetting, recent approaches aim to preserve essential weight subspaces for previous tasks by limiting updates to orthogonal subspaces via gradient projection. While effective, this approach can lead to suboptimal performance, particularly when tasks are highly correlated. In this work, we introduce COnceptor-based gradient projection for DEep Continual Learning (CODE-CL), a novel method that leverages conceptor matrix representations, a computational model inspired by neuroscience, to more flexibly handle highly correlated tasks. CODE-CL encodes directional importance within the input space of past tasks, allowing new knowledge integration in directions modulated by $1-S$, where $S$ represents the direction's relevance for prior tasks. Additionally, we analyze task overlap using conceptor-based representations to identify highly correlated tasks, facilitating efficient forward knowledge transfer through scaled projection within their intersecting subspace. This strategy enhances flexibility, allowing learning in correlated tasks without significantly disrupting previous knowledge. Extensive experiments on continual learning image classification benchmarks validate CODE-CL's efficacy, showcasing superior performance with minimal forgetting, outperforming most state-of-the-art methods.
Abstract:Spiking Neural Networks (SNNs), with their inherent recurrence, offer an efficient method for processing the asynchronous temporal data generated by Dynamic Vision Sensors (DVS), making them well-suited for event-based vision applications. However, existing SNN accelerators suffer from limitations in adaptability to diverse neuron models, bit precisions and network sizes, inefficient membrane potential (Vmem) handling, and limited sparse optimizations. In response to these challenges, we propose a scalable and reconfigurable digital compute-in-memory (CIM) SNN accelerator \chipname with a set of key features: 1) It uses in-memory computations and reconfigurable operating modes to minimize data movement associated with weight and Vmem data structures while efficiently adapting to different workloads. 2) It supports multiple weight/Vmem bit precision values, enabling a trade-off between accuracy and energy efficiency and enhancing adaptability to diverse application demands. 3) A zero-skipping mechanism for sparse inputs significantly reduces energy usage by leveraging the inherent sparsity of spikes without introducing high overheads for low sparsity. 4) Finally, the asynchronous handshaking mechanism maintains the computational efficiency of the pipeline for variable execution times of different computation units. We fabricated \chipname in 65 nm Taiwan Semiconductor Manufacturing Company (TSMC) low-power (LP) technology. It demonstrates competitive performance (scaled to the same technology node) to other digital SNN accelerators proposed in the recent literature and supports advanced reconfigurability. It achieves up to 5 TOPS/W energy efficiency at 95% input sparsity with 4-bit weights and 7-bit Vmem precision.