Purdue
Abstract:Masked diffusion models have emerged as a powerful framework for text and multimodal generation. However, their sampling procedure updates multiple tokens simultaneously and treats generated tokens as immutable, which may lead to error accumulation when early mistakes cannot be revised. In this work, we revisit existing self-correction methods and identify limitations stemming from additional training requirements or reliance on misaligned likelihood estimates. We propose a training-free self-correction framework that exploits the inductive biases of pre-trained masked diffusion models. Without modifying model parameters or introducing auxiliary evaluators, our method significantly improves generation quality on text-to-image generation and multimodal understanding tasks with reduced sampling steps. Moreover, the proposed framework generalizes across different masked diffusion architectures, highlighting its robustness and practical applicability. Code can be found in https://github.com/huge123/FreeCorrection.
Abstract:Diffusion models and flow matching have demonstrated remarkable success in text-to-image generation. While many existing alignment methods primarily focus on fine-tuning pre-trained generative models to maximize a given reward function, these approaches require extensive computational resources and may not generalize well across different objectives. In this work, we propose a novel alignment framework by leveraging the underlying nature of the alignment problem -- sampling from reward-weighted distributions -- and show that it applies to both diffusion models (via score guidance) and flow matching models (via velocity guidance). The score function (velocity field) required for the reward-weighted distribution can be decomposed into the pre-trained score (velocity field) plus a conditional expectation of the reward. For the alignment on the diffusion model, we identify a fundamental challenge: the adversarial nature of the guidance term can introduce undesirable artifacts in the generated images. Therefore, we propose a finetuning-free framework that trains a guidance network to estimate the conditional expectation of the reward. We achieve comparable performance to finetuning-based models with one-step generation with at least a 60% reduction in computational cost. For the alignment on flow matching, we propose a training-free framework that improves the generation quality without additional computational cost.
Abstract:A major challenge in training TableQA agents, compared to standard text- and image-based agents, is that answers cannot be inferred from a static input but must be reasoned through stepwise transformations of the table state, introducing multi-step reasoning complexity and environmental interaction. This leads to a research question: Can explicit feedback on table transformation action improve model reasoning capability? In this work, we introduce RE-Tab, a plug-and-play framework that architecturally enhances trajectory search via lightweight, training-free reward modeling by formulating the problem as a Partially Observable Markov Decision Process. We demonstrate that providing explicit verifiable rewards during State Transition (``What is the best action?'') and Simulative Reasoning (``Am I sure about the output?'') is crucial to steer the agent's navigation in table states. By enforcing stepwise reasoning with reward feedback in table transformations, RE-Tab achieves state-of-the-art performance in TableQA with almost 25\% drop in inference cost. Furthermore, a direct plug-and-play implementation of RE-Tab brings up to 41.77% improvement in QA accuracy and 33.33% drop in test-time inference samples for consistent answer. Consistent improvement pattern across various LLMs and state-of-the-art benchmarks further confirms RE-Tab's generalisability. The repository is available at https://github.com/ThomasK1018/RE_Tab .
Abstract:Discrete flow models (DFMs) have been proposed to learn the data distribution on a finite state space, offering a flexible framework as an alternative to discrete diffusion models. A line of recent work has studied samplers for discrete diffusion models, such as tau-leaping and Euler solver. However, these samplers require a large number of iterations to control discretization error, since the transition rates are frozen in time and evaluated at the initial state within each time interval. Moreover, theoretical results for these samplers often require boundedness conditions of the transition rate or they focus on a specific type of source distributions. To address those limitations, we establish non-asymptotic discretization error bounds for those samplers without any restriction on transition rates and source distributions, under the framework of discrete flow models. Furthermore, by analyzing a one-step lower bound of the Euler sampler, we propose two corrected samplers: \textit{time-corrected sampler} and \textit{location-corrected sampler}, which can reduce the discretization error of tau-leaping and Euler solver with almost no additional computational cost. We rigorously show that the location-corrected sampler has a lower iteration complexity than existing parallel samplers. We validate the effectiveness of the proposed method by demonstrating improved generation quality and reduced inference time on both simulation and text-to-image generation tasks. Code can be found in https://github.com/WanZhengyan/Corrected-Samplers-for-Discrete-Flow-Models.
Abstract:Large Language Models (LLMs) have recently demonstrated remarkable performance in generating high-quality tabular synthetic data. In practice, two primary approaches have emerged for adapting LLMs to tabular data generation: (i) fine-tuning smaller models directly on tabular datasets, and (ii) prompting larger models with examples provided in context. In this work, we show that popular implementations from both regimes exhibit a tendency to compromise privacy by reproducing memorized patterns of numeric digits from their training data. To systematically analyze this risk, we introduce a simple No-box Membership Inference Attack (MIA) called LevAtt that assumes adversarial access to only the generated synthetic data and targets the string sequences of numeric digits in synthetic observations. Using this approach, our attack exposes substantial privacy leakage across a wide range of models and datasets, and in some cases, is even a perfect membership classifier on state-of-the-art models. Our findings highlight a unique privacy vulnerability of LLM-based synthetic data generation and the need for effective defenses. To this end, we propose two methods, including a novel sampling strategy that strategically perturbs digits during generation. Our evaluation demonstrates that this approach can defeat these attacks with minimal loss of fidelity and utility of the synthetic data.
Abstract:Discrete flow models offer a powerful framework for learning distributions over discrete state spaces and have demonstrated superior performance compared to the discrete diffusion model. However, their convergence properties and error analysis remain largely unexplored. In this work, we develop a unified framework grounded in stochastic calculus theory to systematically investigate the theoretical properties of discrete flow. Specifically, we derive the KL divergence of two path measures regarding two continuous-time Markov chains (CTMCs) with different transition rates by developing a novel Girsanov-type theorem, and provide a comprehensive analysis that encompasses the error arising from transition rate estimation and early stopping, where the first type of error has rarely been analyzed by existing works. Unlike discrete diffusion models, discrete flow incurs no truncation error caused by truncating the time horizon in the noising process. Building on generator matching and uniformization, we establish non-asymptotic error bounds for distribution estimation. Our results provide the first error analysis for discrete flow models.




Abstract:Guidance provides a simple and effective framework for posterior sampling by steering the generation process towards the desired distribution. When modeling discrete data, existing approaches mostly focus on guidance with the first-order Taylor approximation to improve the sampling efficiency. However, such an approximation is inappropriate in discrete state spaces since the approximation error could be large. A novel guidance framework for discrete data is proposed to address this problem: We derive the exact transition rate for the desired distribution given a learned discrete flow matching model, leading to guidance that only requires a single forward pass in each sampling step, significantly improving efficiency. This unified novel framework is general enough, encompassing existing guidance methods as special cases, and it can also be seamlessly applied to the masked diffusion model. We demonstrate the effectiveness of our proposed guidance on energy-guided simulations and preference alignment on text-to-image generation and multimodal understanding tasks. The code is available through https://github.com/WanZhengyan/Discrete-Guidance-Matching/tree/main.
Abstract:Auditing the privacy leakage of synthetic data is an important but unresolved problem. Most existing privacy auditing frameworks for synthetic data rely on heuristics and unreasonable assumptions to attack the failure modes of generative models, exhibiting limited capability to describe and detect the privacy exposure of training data through synthetic data release. In this paper, we study designing Membership Inference Attacks (MIAs) that specifically exploit the observation that tabular generative models tend to significantly overfit to certain regions of the training distribution. Here, we propose Generative Likelihood Ratio Attack (Gen-LRA), a novel, computationally efficient No-Box MIA that, with no assumption of model knowledge or access, formulates its attack by evaluating the influence a test observation has in a surrogate model's estimation of a local likelihood ratio over the synthetic data. Assessed over a comprehensive benchmark spanning diverse datasets, model architectures, and attack parameters, we find that Gen-LRA consistently dominates other MIAs for generative models across multiple performance metrics. These results underscore Gen-LRA's effectiveness as a privacy auditing tool for the release of synthetic data, highlighting the significant privacy risks posed by generative model overfitting in real-world applications.
Abstract:Synthetic tabular data is essential for machine learning workflows, especially for expanding small or imbalanced datasets and enabling privacy-preserving data sharing. However, state-of-the-art generative models (GANs, VAEs, diffusion models) rely on large datasets with thousands of examples. In low-data settings, often the primary motivation for synthetic data, these models can overfit, leak sensitive records, and require frequent retraining. Recent work uses large pre-trained transformers to generate rows via in-context learning (ICL), which needs only a few seed examples and no parameter updates, avoiding retraining. But ICL repeats seed rows verbatim, introducing a new privacy risk that has only been studied in text. The severity of this risk in tabular synthesis-where a single row may identify a person-remains unclear. We address this gap with the first benchmark of three foundation models (GPT-4o-mini, LLaMA 3.3 70B, TabPFN v2) against four baselines on 35 real-world tables from health, finance, and policy. We evaluate statistical fidelity, downstream utility, and membership inference leakage. Results show foundation models consistently have the highest privacy risk. LLaMA 3.3 70B reaches up to 54 percentage points higher true-positive rate at 1% FPR than the safest baseline. GPT-4o-mini and TabPFN are also highly vulnerable. We plot the privacy-utility frontier and show that CTGAN and GPT-4o-mini offer better tradeoffs. A factorial study finds that three zero-cost prompt tweaks-small batch size, low temperature, and using summary statistics-can reduce worst-case AUC by 14 points and rare-class leakage by up to 39 points while maintaining over 90% fidelity. Our benchmark offers a practical guide for safer low-data synthesis with foundation models.




Abstract:The proliferation of unmanned aerial vehicle (UAV) swarms has enabled a wide range of mission-critical applications, but also exposes UAV networks to severe Denial-of-Service (DoS) threats due to their open wireless environment, dynamic topology, and resource constraints. Traditional static or centralized defense mechanisms are often inadequate for such dynamic and distributed scenarios. To address these challenges, we propose a novel federated multi-agent deep reinforcement learning (FMADRL)-driven moving target defense (MTD) framework for proactive and adaptive DoS mitigation in UAV swarm networks. Specifically, we design three lightweight and coordinated MTD mechanisms, including leader switching, route mutation, and frequency hopping, that leverage the inherent flexibility of UAV swarms to disrupt attacker efforts and enhance network resilience. The defense problem is formulated as a multi-agent partially observable Markov decision process (POMDP), capturing the distributed, resource-constrained, and uncertain nature of UAV swarms under attack. Each UAV is equipped with a local policy agent that autonomously selects MTD actions based on partial observations and local experiences. By employing a policy gradient-based FMADRL algorithm, UAVs collaboratively optimize their defense policies via reward-weighted aggregation, enabling distributed learning without sharing raw data and thus reducing communication overhead. Extensive simulations demonstrate that our approach significantly outperforms state-of-the-art baselines, achieving up to a 34.6% improvement in attack mitigation rate, a reduction in average recovery time of up to 94.6%, and decreases in energy consumption and defense cost by as much as 29.3% and 98.3%, respectively, while maintaining robust mission continuity under various DoS attack strategies.