Topic:Image To Image Translation
What is Image To Image Translation? Image-to-image translation is the process of converting an image from one domain to another using deep learning techniques.
Papers and Code
Jan 17, 2025
Abstract:Despite advancements in cross-domain image translation, challenges persist in asymmetric tasks such as SAR-to-Optical and Sketch-to-Instance conversions, which involve transforming data from a less detailed domain into one with richer content. Traditional CNN-based methods are effective at capturing fine details but struggle with global structure, leading to unwanted merging of image regions. To address this, we propose the CNN-Swin Hybrid Network (CSHNet), which combines two key modules: Swin Embedded CNN (SEC) and CNN Embedded Swin (CES), forming the SEC-CES-Bottleneck (SCB). SEC leverages CNN's detailed feature extraction while integrating the Swin Transformer's structural bias. CES, in turn, preserves the Swin Transformer's global integrity, compensating for CNN's lack of focus on structure. Additionally, CSHNet includes two components designed to enhance cross-domain information retention: the Interactive Guided Connection (IGC), which enables dynamic information exchange between SEC and CES, and Adaptive Edge Perception Loss (AEPL), which maintains structural boundaries during translation. Experimental results show that CSHNet outperforms existing methods in both visual quality and performance metrics across scene-level and instance-level datasets. Our code is available at: https://github.com/XduShi/CSHNet.
Via
Jan 16, 2025
Abstract:Model compression through knowledge distillation has seen extensive application in classification and segmentation tasks. However, its potential in image-to-image translation, particularly in image restoration, remains underexplored. To address this gap, we propose a Simultaneous Learning Knowledge Distillation (SLKD) framework tailored for model compression in image restoration tasks. SLKD employs a dual-teacher, single-student architecture with two distinct learning strategies: Degradation Removal Learning (DRL) and Image Reconstruction Learning (IRL), simultaneously. In DRL, the student encoder learns from Teacher A to focus on removing degradation factors, guided by a novel BRISQUE extractor. In IRL, the student decoder learns from Teacher B to reconstruct clean images, with the assistance of a proposed PIQE extractor. These strategies enable the student to learn from degraded and clean images simultaneously, ensuring high-quality compression of image restoration models. Experimental results across five datasets and three tasks demonstrate that SLKD achieves substantial reductions in FLOPs and parameters, exceeding 80\%, while maintaining strong image restoration performance.
* Accepted by ICASSP2025
Via
Jan 13, 2025
Abstract:Despite success in volume-to-volume translations in medical images, most existing models struggle to effectively capture the inherent volumetric distribution using 3D representations. The current state-of-the-art approach combines multiple 2D-based networks through weighted averaging, thereby neglecting the 3D spatial structures. Directly training 3D models in medical imaging presents significant challenges due to high computational demands and the need for large-scale datasets. To address these challenges, we introduce Diff-Ensembler, a novel hybrid 2D-3D model for efficient and effective volumetric translations by ensembling perpendicularly trained 2D diffusion models with a 3D network in each diffusion step. Moreover, our model can naturally be used to ensemble diffusion models conditioned on different modalities, allowing flexible and accurate fusion of input conditions. Extensive experiments demonstrate that Diff-Ensembler attains superior accuracy and volumetric realism in 3D medical image super-resolution and modality translation. We further demonstrate the strength of our model's volumetric realism using tumor segmentation as a downstream task.
Via
Jan 13, 2025
Abstract:Modern brain imaging technologies have enabled the detailed reconstruction of human brain connectomes, capturing structural connectivity (SC) from diffusion MRI and functional connectivity (FC) from functional MRI. Understanding the intricate relationships between SC and FC is vital for gaining deeper insights into the brain's functional and organizational mechanisms. However, obtaining both SC and FC modalities simultaneously remains challenging, hindering comprehensive analyses. Existing deep generative models typically focus on synthesizing a single modality or unidirectional translation between FC and SC, thereby missing the potential benefits of bi-directional translation, especially in scenarios where only one connectome is available. Therefore, we propose Structural-Functional Connectivity GAN (SFC-GAN), a novel framework for bidirectional translation between SC and FC. This approach leverages the CycleGAN architecture, incorporating convolutional layers to effectively capture the spatial structures of brain connectomes. To preserve the topological integrity of these connectomes, we employ a structure-preserving loss that guides the model in capturing both global and local connectome patterns while maintaining symmetry. Our framework demonstrates superior performance in translating between SC and FC, outperforming baseline models in similarity and graph property evaluations compared to ground truth data, each translated modality can be effectively utilized for downstream classification.
* 5 pages, 2 figures
Via
Jan 14, 2025
Abstract:Remote sensing visual question answering (RSVQA) is a task that automatically extracts information from satellite images and processes a question to predict the answer from the images in textual form, helping with the interpretation of the image. While different methods have been proposed to extract information from optical images with different spectral bands and resolutions, no method has been proposed to answer questions from Synthetic Aperture Radar (SAR) images. SAR images capture electromagnetic information from the scene, and are less affected by atmospheric conditions, such as clouds. In this work, our objective is to introduce SAR in the RSVQA task, finding the best way to use this modality. In our research, we carry out a study on different pipelines for the task of RSVQA taking into account information from both SAR and optical data. To this purpose, we also present a dataset that allows for the introduction of SAR images in the RSVQA framework. We propose two different models to include the SAR modality. The first one is an end-to-end method in which we add an additional encoder for the SAR modality. In the second approach, we build on a two-stage framework. First, relevant information is extracted from SAR and, optionally, optical data. This information is then translated into natural language to be used in the second step which only relies on a language model to provide the answer. We find that the second pipeline allows us to obtain good results with SAR images alone. We then try various types of fusion methods to use SAR and optical images together, finding that a fusion at the decision level achieves the best results on the proposed dataset. We show that SAR data offers additional information when fused with the optical modality, particularly for questions related to specific land cover classes, such as water areas.
* 26 pages, 6 figures
Via
Jan 13, 2025
Abstract:Previous work on augmenting large multimodal models (LMMs) for text-to-image (T2I) generation has focused on enriching the input space of in-context learning (ICL). This includes providing a few demonstrations and optimizing image descriptions to be more detailed and logical. However, as demand for more complex and flexible image descriptions grows, enhancing comprehension of input text within the ICL paradigm remains a critical yet underexplored area. In this work, we extend this line of research by constructing parallel multilingual prompts aimed at harnessing the multilingual capabilities of LMMs. More specifically, we translate the input text into several languages and provide the models with both the original text and the translations. Experiments on two LMMs across 3 benchmarks show that our method, PMT2I, achieves superior performance in general, compositional, and fine-grained assessments, especially in human preference alignment. Additionally, with its advantage of generating more diverse images, PMT2I significantly outperforms baseline prompts when incorporated with reranking methods. Our code and parallel multilingual data can be found at https://github.com/takagi97/PMT2I.
* Accepted to ICASSP 2025
Via
Jan 09, 2025
Abstract:Recent advancements in image translation for enhancing mixed-exposure images have demonstrated the transformative potential of deep learning algorithms. However, addressing extreme exposure variations in images remains a significant challenge due to the inherent complexity and contrast inconsistencies across regions. Current methods often struggle to adapt effectively to these variations, resulting in suboptimal performance. In this work, we propose HipyrNet, a novel approach that integrates a HyperNetwork within a Laplacian Pyramid-based framework to tackle the challenges of mixed-exposure image enhancement. The inclusion of a HyperNetwork allows the model to adapt to these exposure variations. HyperNetworks dynamically generates weights for another network, allowing dynamic changes during deployment. In our model, the HyperNetwork employed is used to predict optimal kernels for Feature Pyramid decomposition, which enables a tailored and adaptive decomposition process for each input image. Our enhanced translational network incorporates multiscale decomposition and reconstruction, leveraging dynamic kernel prediction to capture and manipulate features across varying scales. Extensive experiments demonstrate that HipyrNet outperforms existing methods, particularly in scenarios with extreme exposure variations, achieving superior results in both qualitative and quantitative evaluations. Our approach sets a new benchmark for mixed-exposure image enhancement, paving the way for future research in adaptive image translation.
Via
Jan 09, 2025
Abstract:Concept Bottleneck Models (CBMs) offer inherent interpretability by initially translating images into human-comprehensible concepts, followed by a linear combination of these concepts for classification. However, the annotation of concepts for visual recognition tasks requires extensive expert knowledge and labor, constraining the broad adoption of CBMs. Recent approaches have leveraged the knowledge of large language models to construct concept bottlenecks, with multimodal models like CLIP subsequently mapping image features into the concept feature space for classification. Despite this, the concepts produced by language models can be verbose and may introduce non-visual attributes, which hurts accuracy and interpretability. In this study, we investigate to avoid these issues by constructing CBMs directly from multimodal models. To this end, we adopt common words as base concept vocabulary and leverage auxiliary unlabeled images to construct a Vision-to-Concept (V2C) tokenizer that can explicitly quantize images into their most relevant visual concepts, thus creating a vision-oriented concept bottleneck tightly coupled with the multimodal model. This leads to our V2C-CBM which is training efficient and interpretable with high accuracy. Our V2C-CBM has matched or outperformed LLM-supervised CBMs on various visual classification benchmarks, validating the efficacy of our approach.
* Accepted by AAAI2025
Via
Jan 10, 2025
Abstract:With the rise and ubiquity of larger deep learning models, the need for high-quality compression techniques is growing in order to deploy these models widely. The sheer parameter count of these models makes it difficult to fit them into the memory constraints of different hardware. In this work, we present a novel approach to model compression by merging similar parameter groups within a model, rather than pruning away less important parameters. Specifically, we select, align, and merge separate feed-forward sublayers in Transformer models, and test our method on language modeling, image classification, and machine translation. With our method, we demonstrate performance comparable to the original models while combining more than a third of model feed-forward sublayers, and demonstrate improved performance over a strong layer-pruning baseline. For instance, we can remove over 21% of total parameters from a Vision Transformer, while maintaining 99% of its original performance. Additionally, we observe that some groups of feed-forward sublayers exhibit high activation similarity, which may help explain their surprising mergeability.
Via
Jan 08, 2025
Abstract:Chart interpretation is crucial for visual data analysis, but accurately extracting information from charts poses significant challenges for automated models. This study investigates the fine-tuning of DEPLOT, a modality conversion module that translates the image of a plot or chart to a linearized table, on a custom dataset of 50,000 bar charts. The dataset comprises simple, stacked, and grouped bar charts, targeting the unique structural features of these visualizations. The finetuned DEPLOT model is evaluated against its base version using a test set of 1,000 images and two metrics: Relative Mapping Similarity (RMS), which measures categorical mapping accuracy, and Relative Number Set Similarity (RNSS), which evaluates numerical interpretation accuracy. To further explore the reasoning capabilities of large language models (LLMs), we curate an additional set of 100 bar chart images paired with question answer sets. Our findings demonstrate that providing a structured intermediate table alongside the image significantly enhances LLM reasoning performance compared to direct image queries.
Via