Abstract:Mixed Reality (MR) platforms enable users to interact with three-dimensional holographic instructions during the assembly and fabrication of highly custom and parametric architectural constructions without the necessity of two-dimensional drawings. Previous MR fabrication projects have primarily relied on digital menus and custom buttons as the interface for user interaction with the MR environment. Despite this approach being widely adopted, it is limited in its ability to allow for direct human interaction with physical objects to modify fabrication instructions within the MR environment. This research integrates user interactions with physical objects through real-time gesture recognition as input to modify, update or generate new digital information enabling reciprocal stimuli between the physical and the virtual environment. Consequently, the digital environment is generative of the user's provided interaction with physical objects to allow seamless feedback in the fabrication process. This research investigates gesture recognition for feedback-based MR workflows for robotic fabrication, human assembly, and quality control in the construction of the UnLog Tower.
Abstract:We present a system that transforms speech into physical objects by combining 3D generative Artificial Intelligence with robotic assembly. The system leverages natural language input to make design and manufacturing more accessible, enabling individuals without expertise in 3D modeling or robotic programming to create physical objects. We propose utilizing discrete robotic assembly of lattice-based voxel components to address the challenges of using generative AI outputs in physical production, such as design variability, fabrication speed, structural integrity, and material waste. The system interprets speech to generate 3D objects, discretizes them into voxel components, computes an optimized assembly sequence, and generates a robotic toolpath. The results are demonstrated through the assembly of various objects, ranging from chairs to shelves, which are prompted via speech and realized within 5 minutes using a 6-axis robotic arm.