Abstract:Recent advancements in Augmented Reality (AR) have demonstrated applications in architecture, design, and fabrication. Compared to conventional 2D construction drawings, AR can be used to superimpose contextual instructions, display 3D spatial information and enable on-site engagement. Despite the potential of AR, the widespread adoption of the technology in the industry is limited by its precision. Precision is important for projects requiring strict construction tolerances, design fidelity, and fabrication feedback. For example, the manufacturing of glulam beams requires tolerances of less than 2mm. The goal of this project is to explore the industrial application of using multiple fiducial markers for high-precision AR fabrication. While the method has been validated in lab settings with a precision of 0.97, this paper focuses on fabricating glulam beams in a factory setting with an industry manufacturer, Unalam Factory.
Abstract:Mixed Reality (MR) platforms enable users to interact with three-dimensional holographic instructions during the assembly and fabrication of highly custom and parametric architectural constructions without the necessity of two-dimensional drawings. Previous MR fabrication projects have primarily relied on digital menus and custom buttons as the interface for user interaction with the MR environment. Despite this approach being widely adopted, it is limited in its ability to allow for direct human interaction with physical objects to modify fabrication instructions within the MR environment. This research integrates user interactions with physical objects through real-time gesture recognition as input to modify, update or generate new digital information enabling reciprocal stimuli between the physical and the virtual environment. Consequently, the digital environment is generative of the user's provided interaction with physical objects to allow seamless feedback in the fabrication process. This research investigates gesture recognition for feedback-based MR workflows for robotic fabrication, human assembly, and quality control in the construction of the UnLog Tower.