Action recognition in videos is the process of identifying and categorizing human actions or activities in video sequences.
While foundation models have advanced surgical video analysis, current approaches rely predominantly on pixel-level reconstruction objectives that waste model capacity on low-level visual details - such as smoke, specular reflections, and fluid motion - rather than semantic structures essential for surgical understanding. We present UniSurg, a video-native foundation model that shifts the learning paradigm from pixel-level reconstruction to latent motion prediction. Built on the Video Joint Embedding Predictive Architecture (V-JEPA), UniSurg introduces three key technical innovations tailored to surgical videos: 1) motion-guided latent prediction to prioritize semantically meaningful regions, 2) spatiotemporal affinity self-distillation to enforce relational consistency, and 3) feature diversity regularization to prevent representation collapse in texture-sparse surgical scenes. To enable large-scale pretraining, we curate UniSurg-15M, the largest surgical video dataset to date, comprising 3,658 hours of video from 50 sources across 13 anatomical regions. Extensive experiments across 17 benchmarks demonstrate that UniSurg significantly outperforms state-of-the-art methods on surgical workflow recognition (+14.6% F1 on EgoSurgery, +10.3% on PitVis), action triplet recognition (39.54% mAP-IVT on CholecT50), skill assessment, polyp segmentation, and depth estimation. These results establish UniSurg as a new standard for universal, motion-oriented surgical video understanding.
IMU-based Human Activity Recognition (HAR) has enabled a wide range of ubiquitous computing applications, yet its dominant clip classification paradigm cannot capture the rich temporal structure of real-world behaviors. This motivates a shift toward IMU Temporal Action Localization (IMU-TAL), which predicts both action categories and their start/end times in continuous streams. However, current progress is strongly bottlenecked by the need for dense, frame-level boundary annotations, which are costly and difficult to scale. To address this bottleneck, we introduce WS-IMUBench, a systematic benchmark study of weakly supervised IMU-TAL (WS-IMU-TAL) under only sequence-level labels. Rather than proposing a new localization algorithm, we evaluate how well established weakly supervised localization paradigms from audio, image, and video transfer to IMU-TAL under only sequence-level labels. We benchmark seven representative weakly supervised methods on seven public IMU datasets, resulting in over 3,540 model training runs and 7,080 inference evaluations. Guided by three research questions on transferability, effectiveness, and insights, our findings show that (i) transfer is modality-dependent, with temporal-domain methods generally more stable than image-derived proposal-based approaches; (ii) weak supervision can be competitive on favorable datasets (e.g., with longer actions and higher-dimensional sensing); and (iii) dominant failure modes arise from short actions, temporal ambiguity, and proposal quality. Finally, we outline concrete directions for advancing WS-IMU-TAL (e.g., IMU-specific proposal generation, boundary-aware objectives, and stronger temporal reasoning). Beyond individual results, WS-IMUBench establishes a reproducible benchmarking template, datasets, protocols, and analyses, to accelerate community-wide progress toward scalable WS-IMU-TAL.
Spiking neural networks (SNNs) have gained traction in vision due to their energy efficiency, bio-plausibility, and inherent temporal processing. Yet, despite this temporal capacity, most progress concentrates on static image benchmarks, and SNNs still underperform on dynamic video tasks compared to artificial neural networks (ANNs). In this work, we diagnose a fundamental pass-band mismatch: Standard spiking dynamics behave as a temporal low pass that emphasizes static content while attenuating motion bearing bands, where task relevant information concentrates in dynamic tasks. This phenomenon explains why SNNs can approach ANNs on static tasks yet fall behind on tasks that demand richer temporal understanding.To remedy this, we propose the Pass-Bands Optimizer (PBO), a plug-and-play module that optimizes the temporal pass-band toward task-relevant motion bands. PBO introduces only two learnable parameters, and a lightweight consistency constraint that preserves semantics and boundaries, incurring negligible computational overhead and requires no architectural changes. PBO deliberately suppresses static components that contribute little to discrimination, effectively high passing the stream so that spiking activity concentrates on motion bearing content. On UCF101, PBO yields over ten percentage points improvement. On more complex multi-modal action recognition and weakly supervised video anomaly detection, PBO delivers consistent and significant gains, offering a new perspective for SNN based video processing and understanding.
Endotracheal suctioning (ES) is an invasive yet essential clinical procedure that requires a high degree of skill to minimize patient risk - particularly in home care and educational settings, where consistent supervision may be limited. Despite its critical importance, automated recognition and feedback systems for ES training remain underexplored. To address this gap, this study proposes a unified, LLM-centered framework for video-based activity recognition benchmarked against conventional machine learning and deep learning approaches, and a pilot study on feedback generation. Within this framework, the Large Language Model (LLM) serves as the central reasoning module, performing both spatiotemporal activity recognition and explainable decision analysis from video data. Furthermore, the LLM is capable of verbalizing feedback in natural language, thereby translating complex technical insights into accessible, human-understandable guidance for trainees. Experimental results demonstrate that the proposed LLM-based approach outperforms baseline models, achieving an improvement of approximately 15-20\% in both accuracy and F1 score. Beyond recognition, the framework incorporates a pilot student-support module built upon anomaly detection and explainable AI (XAI) principles, which provides automated, interpretable feedback highlighting correct actions and suggesting targeted improvements. Collectively, these contributions establish a scalable, interpretable, and data-driven foundation for advancing nursing education, enhancing training efficiency, and ultimately improving patient safety.
Egocentric video action recognition under domain shifts remains challenging due to large intra-class spatio-temporal variability, long-tailed feature distributions, and strong correlations between actions and environments. Existing benchmarks for egocentric domain generalization often conflate covariate shifts with concept shifts, making it difficult to reliably evaluate a model's ability to generalize across input distributions. To address this limitation, we introduce Ego4OOD, a domain generalization benchmark derived from Ego4D that emphasizes measurable covariate diversity while reducing concept shift through semantically coherent, moment-level action categories. Ego4OOD spans eight geographically distinct domains and is accompanied by a clustering-based covariate shift metric that provides a quantitative proxy for domain difficulty. We further leverage a one-vs-all binary training objective that decomposes multi-class action recognition into independent binary classification tasks. This formulation is particularly well-suited for covariate shift by reducing interference between visually similar classes under feature distribution shift. Using this formulation, we show that a lightweight two-layer fully connected network achieves performance competitive with state-of-the-art egocentric domain generalization methods on both Argo1M and Ego4OOD, despite using fewer parameters and no additional modalities. Our empirical analysis demonstrates a clear relationship between measured covariate shift and recognition performance, highlighting the importance of controlled benchmarks and quantitative domain characterization for studying out-of-distribution generalization in egocentric video.
We study Compositional Video Understanding (CVU), where models must recognize verbs and objects and compose them to generalize to unseen combinations. We find that existing Zero-Shot Compositional Action Recognition (ZS-CAR) models fail primarily due to an overlooked failure mode: object-driven verb shortcuts. Through systematic analysis, we show that this behavior arises from two intertwined factors: severe sparsity and skewness of compositional supervision, and the asymmetric learning difficulty between verbs and objects. As training progresses, the existing ZS-CAR model increasingly ignores visual evidence and overfits to co-occurrence statistics. Consequently, the existing model does not gain the benefit of compositional recognition in unseen verb-object compositions. To address this, we propose RCORE, a simple and effective framework that enforces temporally grounded verb learning. RCORE introduces (i) a composition-aware augmentation that diversifies verb-object combinations without corrupting motion cues, and (ii) a temporal order regularization loss that penalizes shortcut behaviors by explicitly modeling temporal structure. Across two benchmarks, Sth-com and our newly constructed EK100-com, RCORE significantly improves unseen composition accuracy, reduces reliance on co-occurrence bias, and achieves consistently positive compositional gaps. Our findings reveal object-driven shortcuts as a critical limiting factor in ZS-CAR and demonstrate that addressing them is essential for robust compositional video understanding.
Unsupervised video class incremental learning (uVCIL) represents an important learning paradigm for learning video information without forgetting, and without considering any data labels. Prior approaches have focused on supervised class-incremental learning, relying on using the knowledge of labels and task boundaries, which is costly, requires human annotation, or is simply not a realistic option. In this paper, we propose a simple yet effective approach to address the uVCIL. We first consider a deep feature extractor network, providing a set of representative video features during each task without assuming any class or task information. We then progressively build a series of deep clusters from the extracted features. During the successive task learning, the model updated from the previous task is used as an initial state in order to transfer knowledge to the current learning task. We perform in-depth evaluations on three standard video action recognition datasets, including UCF101, HMDB51, and Something-to-Something V2, by ignoring the labels from the supervised setting. Our approach significantly outperforms other baselines on all datasets.
Motion representation plays an important role in video understanding and has many applications including action recognition, robot and autonomous guidance or others. Lately, transformer networks, through their self-attention mechanism capabilities, have proved their efficiency in many applications. In this study, we introduce a new two-stream transformer video classifier, which extracts spatio-temporal information from content and optical flow representing movement information. The proposed model identifies self-attention features across the joint optical flow and temporal frame domain and represents their relationships within the transformer encoder mechanism. The experimental results show that our proposed methodology provides excellent classification results on three well-known video datasets of human activities.
Human action recognition has become an important research focus in computer vision due to the wide range of applications where it is used. 3D Resnet-based CNN models, particularly MC3, R3D, and R(2+1)D, have different convolutional filters to extract spatiotemporal features. This paper investigates the impact of reducing the captured knowledge from temporal data, while increasing the resolution of the frames. To establish this experiment, we created similar designs to the three originals, but with a dropout layer added before the final classifier. Secondly, we then developed ten new versions for each one of these three designs. The variants include special attention blocks within their architecture, such as convolutional block attention module (CBAM), temporal convolution networks (TCN), in addition to multi-headed and channel attention mechanisms. The purpose behind that is to observe the extent of the influence each of these blocks has on performance for the restricted-temporal models. The results of testing all the models on UCF101 have shown accuracy of 88.98% for the variant with multiheaded attention added to the modified R(2+1)D. This paper concludes the significance of missing temporal features in the performance of the newly created increased resolution models. The variants had different behavior on class-level accuracy, despite the similarity of their enhancements to the overall performance.
This paper presents an overview of the Recognize the Unseen: Unusual Behavior Recognition from Pose Data Challenge, hosted at ISAS 2025. The challenge aims to address the critical need for automated recognition of unusual behaviors in facilities for individuals with developmental disabilities using non-invasive pose estimation data. Participating teams were tasked with distinguishing between normal and unusual activities based on skeleton keypoints extracted from video recordings of simulated scenarios. The dataset reflects real-world imbalance and temporal irregularities in behavior, and the evaluation adopted a Leave-One-Subject-Out (LOSO) strategy to ensure subject-agnostic generalization. The challenge attracted broad participation from 40 teams applying diverse approaches ranging from classical machine learning to deep learning architectures. Submissions were assessed primarily using macro-averaged F1 scores to account for class imbalance. The results highlight the difficulty of modeling rare, abrupt actions in noisy, low-dimensional data, and emphasize the importance of capturing both temporal and contextual nuances in behavior modeling. Insights from this challenge may contribute to future developments in socially responsible AI applications for healthcare and behavior monitoring.