Abstract:Simple data augmentation techniques, such as rotations and flips, are widely used to enhance the generalization power of computer vision models. However, these techniques often fail to modify high-level semantic attributes of a class. To address this limitation, researchers have explored generative augmentation methods like the recently proposed DA-Fusion. Despite some progress, the variations are still largely limited to textural changes, thus falling short on aspects like varied viewpoints, environment, weather conditions, or even class-level semantic attributes (eg, variations in a dog's breed). To overcome this challenge, we propose DIAGen, building upon DA-Fusion. First, we apply Gaussian noise to the embeddings of an object learned with Textual Inversion to diversify generations using a pre-trained diffusion model's knowledge. Second, we exploit the general knowledge of a text-to-text generative model to guide the image generation of the diffusion model with varied class-specific prompts. Finally, we introduce a weighting mechanism to mitigate the impact of poorly generated samples. Experimental results across various datasets show that DIAGen not only enhances semantic diversity but also improves the performance of subsequent classifiers. The advantages of DIAGen over standard augmentations and the DA-Fusion baseline are particularly pronounced with out-of-distribution samples.
Abstract:Slot attention aims to decompose an input image into a set of meaningful object files (slots). These latent object representations enable various downstream tasks. Yet, these slots often bind to object parts, not objects themselves, especially for real-world datasets. To address this, we introduce Guided Latent Slot Diffusion - GLASS, an object-centric model that uses generated captions as a guiding signal to better align slots with objects. Our key insight is to learn the slot-attention module in the space of generated images. This allows us to repurpose the pre-trained diffusion decoder model, which reconstructs the images from the slots, as a semantic mask generator based on the generated captions. GLASS learns an object-level representation suitable for multiple tasks simultaneously, e.g., segmentation, image generation, and property prediction, outperforming previous methods. For object discovery, GLASS achieves approx. a +35% and +10% relative improvement for mIoU over the previous state-of-the-art (SOTA) method on the VOC and COCO datasets, respectively, and establishes a new SOTA FID score for conditional image generation amongst slot-attention-based methods. For the segmentation task, GLASS surpasses SOTA weakly-supervised and language-based segmentation models, which were specifically designed for the task.
Abstract:Attribution maps are one of the most established tools to explain the functioning of computer vision models. They assign importance scores to input features, indicating how relevant each feature is for the prediction of a deep neural network. While much research has gone into proposing new attribution methods, their proper evaluation remains a difficult challenge. In this work, we propose a novel evaluation protocol that overcomes two fundamental limitations of the widely used incremental-deletion protocol, i.e., the out-of-domain issue and lacking inter-model comparisons. This allows us to evaluate 23 attribution methods and how eight different design choices of popular vision models affect their attribution quality. We find that intrinsically explainable models outperform standard models and that raw attribution values exhibit a higher attribution quality than what is known from previous work. Further, we show consistent changes in the attribution quality when varying the network design, indicating that some standard design choices promote attribution quality.
Abstract:A long-standing challenge in developing machine learning approaches has been the lack of high-quality labeled data. Recently, models trained with purely synthetic data, here termed synthetic clones, generated using large-scale pre-trained diffusion models have shown promising results in overcoming this annotation bottleneck. As these synthetic clone models progress, they are likely to be deployed in challenging real-world settings, yet their suitability remains understudied. Our work addresses this gap by providing the first benchmark for three classes of synthetic clone models, namely supervised, self-supervised, and multi-modal ones, across a range of robustness measures. We show that existing synthetic self-supervised and multi-modal clones are comparable to or outperform state-of-the-art real-image baselines for a range of robustness metrics - shape bias, background bias, calibration, etc. However, we also find that synthetic clones are much more susceptible to adversarial and real-world noise than models trained with real data. To address this, we find that combining both real and synthetic data further increases the robustness, and that the choice of prompt used for generating synthetic images plays an important part in the robustness of synthetic clones.
Abstract:Unsupervised semantic segmentation aims to automatically partition images into semantically meaningful regions by identifying global categories within an image corpus without any form of annotation. Building upon recent advances in self-supervised representation learning, we focus on how to leverage these large pre-trained models for the downstream task of unsupervised segmentation. We present PriMaPs - Principal Mask Proposals - decomposing images into semantically meaningful masks based on their feature representation. This allows us to realize unsupervised semantic segmentation by fitting class prototypes to PriMaPs with a stochastic expectation-maximization algorithm, PriMaPs-EM. Despite its conceptual simplicity, PriMaPs-EM leads to competitive results across various pre-trained backbone models, including DINO and DINOv2, and across datasets, such as Cityscapes, COCO-Stuff, and Potsdam-3. Importantly, PriMaPs-EM is able to boost results when applied orthogonally to current state-of-the-art unsupervised semantic segmentation pipelines.
Abstract:Video frame interpolation, the task of synthesizing new frames in between two or more given ones, is becoming an increasingly popular research target. However, the current evaluation of frame interpolation techniques is not ideal. Due to the plethora of test datasets available and inconsistent computation of error metrics, a coherent and fair comparison across papers is very challenging. Furthermore, new test sets have been proposed as part of method papers so they are unable to provide the in-depth evaluation of a dedicated benchmarking paper. Another severe downside is that these test sets violate the assumption of linearity when given two input frames, making it impossible to solve without an oracle. We hence strongly believe that the community would greatly benefit from a benchmarking paper, which is what we propose. Specifically, we present a benchmark which establishes consistent error metrics by utilizing a submission website that computes them, provides insights by analyzing the interpolation quality with respect to various per-pixel attributes such as the motion magnitude, contains a carefully designed test set adhering to the assumption of linearity by utilizing synthetic data, and evaluates the computational efficiency in a coherent manner.
Abstract:The field of explainable artificial intelligence (XAI) aims to uncover the inner workings of complex deep neural models. While being crucial for safety-critical domains, XAI inherently lacks ground-truth explanations, making its automatic evaluation an unsolved problem. We address this challenge by proposing a novel synthetic vision dataset, named FunnyBirds, and accompanying automatic evaluation protocols. Our dataset allows performing semantically meaningful image interventions, e.g., removing individual object parts, which has three important implications. First, it enables analyzing explanations on a part level, which is closer to human comprehension than existing methods that evaluate on a pixel level. Second, by comparing the model output for inputs with removed parts, we can estimate ground-truth part importances that should be reflected in the explanations. Third, by mapping individual explanations into a common space of part importances, we can analyze a variety of different explanation types in a single common framework. Using our tools, we report results for 24 different combinations of neural models and XAI methods, demonstrating the strengths and weaknesses of the assessed methods in a fully automatic and systematic manner.
Abstract:Many convolutional neural networks (CNNs) rely on progressive downsampling of their feature maps to increase the network's receptive field and decrease computational cost. However, this comes at the price of losing granularity in the feature maps, limiting the ability to correctly understand images or recover fine detail in dense prediction tasks. To address this, common practice is to replace the last few downsampling operations in a CNN with dilated convolutions, allowing to retain the feature map resolution without reducing the receptive field, albeit increasing the computational cost. This allows to trade off predictive performance against cost, depending on the output feature resolution. By either regularly downsampling or not downsampling the entire feature map, existing work implicitly treats all regions of the input image and subsequent feature maps as equally important, which generally does not hold. We propose an adaptive downsampling scheme that generalizes the above idea by allowing to process informative regions at a higher resolution than less informative ones. In a variety of experiments, we demonstrate the versatility of our adaptive downsampling strategy and empirically show that it improves the cost-accuracy trade-off of various established CNNs.
Abstract:Most deep learning methods for video frame interpolation consist of three main components: feature extraction, motion estimation, and image synthesis. Existing approaches are mainly distinguishable in terms of how these modules are designed. However, when interpolating high-resolution images, e.g. at 4K, the design choices for achieving high accuracy within reasonable memory requirements are limited. The feature extraction layers help to compress the input and extract relevant information for the latter stages, such as motion estimation. However, these layers are often costly in parameters, computation time, and memory. We show how ideas from dimensionality reduction combined with a lightweight optimization can be used to compress the input representation while keeping the extracted information suitable for frame interpolation. Further, we require neither a pretrained flow network nor a synthesis network, additionally reducing the number of trainable parameters and required memory. When evaluating on three 4K benchmarks, we achieve state-of-the-art image quality among the methods without pretrained flow while having the lowest network complexity and memory requirements overall.
Abstract:The high-quality images yielded by generative adversarial networks (GANs) have motivated investigations into their application for image editing. However, GANs are often limited in the control they provide for performing specific edits. One of the principal challenges is the entangled latent space of GANs, which is not directly suitable for performing independent and detailed edits. Recent editing methods allow for either controlled style edits or controlled semantic edits. In addition, methods that use semantic masks to edit images have difficulty preserving the identity and are unable to perform controlled style edits. We propose a method to disentangle a GAN$\text{'}$s latent space into semantic and style spaces, enabling controlled semantic and style edits for face images independently within the same framework. To achieve this, we design an encoder-decoder based network architecture ($S^2$-Flow), which incorporates two proposed inductive biases. We show the suitability of $S^2$-Flow quantitatively and qualitatively by performing various semantic and style edits.