Abstract:Noninvasive human-machine interfaces such as surface electromyography (sEMG) have long been employed for controlling robotic prostheses. However, classical controllers are limited to few degrees of freedom (DoF). More recently, machine learning methods have been proposed to learn personalized controllers from user data. While promising, they often suffer from distribution shift during long-term usage, requiring costly model re-training. Moreover, most prosthetic sEMG sensors have low spatial density, which limits accuracy and the number of controllable motions. In this work, we address both challenges by introducing a novel myoelectric prosthetic system integrating a high density-sEMG (HD-sEMG) setup and incremental learning methods to accurately control 7 motions of the Hannes prosthesis. First, we present a newly designed, compact HD-sEMG interface equipped with 64 dry electrodes positioned over the forearm. Then, we introduce an efficient incremental learning system enabling model adaptation on a stream of data. We thoroughly analyze multiple learning algorithms across 7 subjects, including one with limb absence, and 6 sessions held in different days covering an extended period of several months. The size and time span of the collected data represent a relevant contribution for studying long-term myocontrol performance. Therefore, we release the DELTA dataset together with our experimental code.
Abstract:Federated Learning (FL) methods often struggle in highly statistically heterogeneous settings. Indeed, non-IID data distributions cause client drift and biased local solutions, particularly pronounced in the final classification layer, negatively impacting convergence speed and accuracy. To address this issue, we introduce Federated Recursive Ridge Regression (Fed3R). Our method fits a Ridge Regression classifier computed in closed form leveraging pre-trained features. Fed3R is immune to statistical heterogeneity and is invariant to the sampling order of the clients. Therefore, it proves particularly effective in cross-device scenarios. Furthermore, it is fast and efficient in terms of communication and computation costs, requiring up to two orders of magnitude fewer resources than the competitors. Finally, we propose to leverage the Fed3R parameters as an initialization for a softmax classifier and subsequently fine-tune the model using any FL algorithm (Fed3R with Fine-Tuning, Fed3R+FT). Our findings also indicate that maintaining a fixed classifier aids in stabilizing the training and learning more discriminative features in cross-device settings. Official website: https://fed-3r.github.io/.
Abstract:This study provides a comprehensive benchmark framework for Source-Free Unsupervised Domain Adaptation (SF-UDA) in image classification, aiming to achieve a rigorous empirical understanding of the complex relationships between multiple key design factors in SF-UDA methods. The study empirically examines a diverse set of SF-UDA techniques, assessing their consistency across datasets, sensitivity to specific hyperparameters, and applicability across different families of backbone architectures. Moreover, it exhaustively evaluates pre-training datasets and strategies, particularly focusing on both supervised and self-supervised methods, as well as the impact of fine-tuning on the source domain. Our analysis also highlights gaps in existing benchmark practices, guiding SF-UDA research towards more effective and general approaches. It emphasizes the importance of backbone architecture and pre-training dataset selection on SF-UDA performance, serving as an essential reference and providing key insights. Lastly, we release the source code of our experimental framework. This facilitates the construction, training, and testing of SF-UDA methods, enabling systematic large-scale experimental analysis and supporting further research efforts in this field.
Abstract:The increasing deployment of robots has significantly enhanced the automation levels across a wide and diverse range of industries. This paper investigates the automation challenges of laser-based dermatology procedures in the beauty industry; This group of related manipulation tasks involves delivering energy from a cosmetic laser onto the skin with repetitive patterns. To automate this procedure, we propose to use a robotic manipulator and endow it with the dexterity of a skilled dermatology practitioner through a learning-from-demonstration framework. To ensure that the cosmetic laser can properly deliver the energy onto the skin surface of an individual, we develop a novel structured prediction-based imitation learning algorithm with the merit of handling geometric constraints. Notably, our proposed algorithm effectively tackles the imitation challenges associated with quasi-periodic motions, a common feature of many laser-based cosmetic tasks. The conducted real-world experiments illustrate the performance of our robotic beautician in mimicking realistic dermatological procedures; Our new method is shown to not only replicate the rhythmic movements from the provided demonstrations but also to adapt the acquired skills to previously unseen scenarios and subjects.
Abstract:We propose a structured prediction approach for robot imitation learning from demonstrations. Among various tools for robot imitation learning, supervised learning has been observed to have a prominent role. Structured prediction is a form of supervised learning that enables learning models to operate on output spaces with complex structures. Through the lens of structured prediction, we show how robots can learn to imitate trajectories belonging to not only Euclidean spaces but also Riemannian manifolds. Exploiting ideas from information theory, we propose a class of loss functions based on the f-divergence to measure the information loss between the demonstrated and reproduced probabilistic trajectories. Different types of f-divergence will result in different policies, which we call imitation modes. Furthermore, our approach enables the incorporation of spatial and temporal trajectory modulation, which is necessary for robots to be adaptive to the change in working conditions. We benchmark our algorithm against state-of-the-art methods in terms of trajectory reproduction and adaptation. The quantitative evaluation shows that our approach outperforms other algorithms regarding both accuracy and efficiency. We also report real-world experimental results on learning manifold trajectories in a polishing task with a KUKA LWR robot arm, illustrating the effectiveness of our algorithmic framework.
Abstract:High Power Laser's (HPL) optimal performance is essential for the success of a wide variety of experimental tasks related to light-matter interactions. Traditionally, HPL parameters are optimised in an automated fashion relying on black-box numerical methods. However, these can be demanding in terms of computational resources and usually disregard transient and complex dynamics. Model-free Deep Reinforcement Learning (DRL) offers a promising alternative framework for optimising HPL performance since it allows to tune the control parameters as a function of system states subject to nonlinear temporal dynamics without requiring an explicit dynamics model of those. Furthermore, DRL aims to find an optimal control policy rather than a static parameter configuration, particularly suitable for dynamic processes involving sequential decision-making. This is particularly relevant as laser systems are typically characterised by dynamic rather than static traits. Hence the need for a strategy to choose the control applied based on the current context instead of one single optimal control configuration. This paper investigates the potential of DRL in improving the efficiency and safety of HPL control systems. We apply this technique to optimise the temporal profile of laser pulses in the L1 pump laser hosted at the ELI Beamlines facility. We show how to adapt DRL to the setting of spectral phase control by solely tuning dispersion coefficients of the spectral phase and reaching pulses similar to transform limited with full-width at half-maximum (FWHM) of ca1.6 ps.
Abstract:Fine-tuning and Domain Adaptation emerged as effective strategies for efficiently transferring deep learning models to new target tasks. However, target domain labels are not accessible in many real-world scenarios. This led to the development of Unsupervised Domain Adaptation (UDA) methods, which only employ unlabeled target samples. Furthermore, efficiency and privacy requirements may also prevent the use of source domain data during the adaptation stage. This challenging setting, known as Source-Free Unsupervised Domain Adaptation (SF-UDA), is gaining interest among researchers and practitioners due to its potential for real-world applications. In this paper, we provide the first in-depth analysis of the main design choices in SF-UDA through a large-scale empirical study across 500 models and 74 domain pairs. We pinpoint the normalization approach, pre-training strategy, and backbone architecture as the most critical factors. Based on our quantitative findings, we propose recipes to best tackle SF-UDA scenarios. Moreover, we show that SF-UDA is competitive also beyond standard benchmarks and backbone architectures, performing on par with UDA at a fraction of the data and computational cost. In the interest of reproducibility, we include the full experimental results and code as supplementary material.
Abstract:Optimization and planning methods for tasks involving 3D objects often rely on prior knowledge and ad-hoc heuristics. In this work, we target learning-based long-horizon path generation by leveraging recent advances in 3D deep learning. We present PaintNet, the first dataset for learning robotic spray painting of free-form 3D objects. PaintNet includes more than 800 object meshes and the associated painting strokes collected in a real industrial setting. We then introduce a novel 3D deep learning method to tackle this task and operate on unstructured input spaces -- point clouds -- and mix-structured output spaces -- unordered sets of painting strokes. Our extensive experimental analysis demonstrates the capabilities of our method to predict smooth output strokes that cover up to 95% of previously unseen object surfaces, with respect to ground-truth paint coverage. The PaintNet dataset and an implementation of our proposed approach will be released at https://gabrieletiboni.github.io/paintnet.
Abstract:Balancing and push-recovery are essential capabilities enabling humanoid robots to solve complex locomotion tasks. In this context, classical control systems tend to be based on simplified physical models and hard-coded strategies. Although successful in specific scenarios, this approach requires demanding tuning of parameters and switching logic between specifically-designed controllers for handling more general perturbations. We apply model-free Deep Reinforcement Learning for training a general and robust humanoid push-recovery policy in a simulation environment. Our method targets high-dimensional whole-body humanoid control and is validated on the iCub humanoid. Reward components incorporating expert knowledge on humanoid control enable fast learning of several robust behaviors by the same policy, spanning the entire body. We validate our method with extensive quantitative analyses in simulation, including out-of-sample tasks which demonstrate policy robustness and generalization, both key requirements towards real-world robot deployment.
Abstract:With the recent advances in machine learning, problems that traditionally would require accurate modeling to be solved analytically can now be successfully approached with data-driven strategies. Among these, computing the inverse kinematics of a redundant robot arm poses a significant challenge due to the non-linear structure of the robot, the hard joint constraints and the non-invertible kinematics map. Moreover, most learning algorithms consider a completely data-driven approach, while often useful information on the structure of the robot is available and should be positively exploited. In this work, we present a simple, yet effective, approach for learning the inverse kinematics. We introduce a structured prediction algorithm that combines a data-driven strategy with the model provided by a forward kinematics function -- even when this function is misspeficied -- to accurately solve the problem. The proposed approach ensures that predicted joint configurations are well within the robot's constraints. We also provide statistical guarantees on the generalization properties of our estimator as well as an empirical evaluation of its performance on trajectory reconstruction tasks.