Abstract:Micro-Action Recognition (MAR) aims to classify subtle human actions in video. However, annotating MAR datasets is particularly challenging due to the subtlety of actions. To this end, we introduce the setting of Semi-Supervised MAR (SSMAR), where only a part of samples are labeled. We first evaluate traditional Semi-Supervised Learning (SSL) methods to SSMAR and find that these methods tend to overfit on inaccurate pseudo-labels, leading to error accumulation and degraded performance. This issue primarily arises from the common practice of directly using the predictions of classifier as pseudo-labels to train the model. To solve this issue, we propose a novel framework, called Asynchronous Pseudo Labeling and Training (APLT), which explicitly separates the pseudo-labeling process from model training. Specifically, we introduce a semi-supervised clustering method during the offline pseudo-labeling phase to generate more accurate pseudo-labels. Moreover, a self-adaptive thresholding strategy is proposed to dynamically filter noisy labels of different classes. We then build a memory-based prototype classifier based on the filtered pseudo-labels, which is fixed and used to guide the subsequent model training phase. By alternating the two pseudo-labeling and model training phases in an asynchronous manner, the model can not only be learned with more accurate pseudo-labels but also avoid the overfitting issue. Experiments on three MAR datasets show that our APLT largely outperforms state-of-the-art SSL methods. For instance, APLT improves accuracy by 14.5\% over FixMatch on the MA-12 dataset when using only 50\% labeled data. Code will be publicly available.
Abstract:We introduce a training-free framework specifically designed to bring real-world static paintings to life through image-to-video (I2V) synthesis, addressing the persistent challenge of aligning these motions with textual guidance while preserving fidelity to the original artworks. Existing I2V methods, primarily trained on natural video datasets, often struggle to generate dynamic outputs from static paintings. It remains challenging to generate motion while maintaining visual consistency with real-world paintings. This results in two distinct failure modes: either static outputs due to limited text-based motion interpretation or distorted dynamics caused by inadequate alignment with real-world artistic styles. We leverage the advanced text-image alignment capabilities of pre-trained image models to guide the animation process. Our approach introduces synthetic proxy images through two key innovations: (1) Dual-path score distillation: We employ a dual-path architecture to distill motion priors from both real and synthetic data, preserving static details from the original painting while learning dynamic characteristics from synthetic frames. (2) Hybrid latent fusion: We integrate hybrid features extracted from real paintings and synthetic proxy images via spherical linear interpolation in the latent space, ensuring smooth transitions and enhancing temporal consistency. Experimental evaluations confirm that our approach significantly improves semantic alignment with text prompts while faithfully preserving the unique characteristics and integrity of the original paintings. Crucially, by achieving enhanced dynamic effects without requiring any model training or learnable parameters, our framework enables plug-and-play integration with existing I2V methods, making it an ideal solution for animating real-world paintings. More animated examples can be found on our project website.
Abstract:We introduce the hfut-lmc team's solution to the SLRTP Sign Production Challenge. The challenge aims to generate semantically aligned sign language pose sequences from text inputs. To this end, we propose a Text-driven Diffusion Model (TDM) framework. During the training phase, TDM utilizes an encoder to encode text sequences and incorporates them into the diffusion model as conditional input to generate sign pose sequences. To guarantee the high quality and accuracy of the generated pose sequences, we utilize two key loss functions. The joint loss function L_{joint} is used to precisely measure and minimize the differences between the joint positions of the generated pose sequences and those of the ground truth. Similarly, the bone orientation loss function L_{bone} is instrumental in ensuring that the orientation of the bones in the generated poses aligns with the actual, correct orientations. In the inference stage, the TDM framework takes on a different yet equally important task. It starts with noisy sequences and, under the strict constraints of the text conditions, gradually refines and generates semantically consistent sign language pose sequences. Our carefully designed framework performs well on the sign language production task, and our solution achieves a BLEU-1 score of 20.17, placing second in the challenge.
Abstract:We introduce \textbf{Knowledge Swapping}, a novel task designed to selectively regulate knowledge of a pretrained model by enabling the forgetting of user\-specified information, retaining essential knowledge, and acquiring new knowledge simultaneously. By delving into the analysis of knock-on feature hierarchy, we find that incremental learning typically progresses from low\-level representations to higher\-level semantics, whereas forgetting tends to occur in the opposite direction\-starting from high-level semantics and moving down to low-level features. Building upon this, we propose to benchmark the knowledge swapping task with the strategy of \textit{Learning Before Forgetting}. Comprehensive experiments on various tasks like image classification, object detection, and semantic segmentation validate the effectiveness of the proposed strategy. The source code is available at \href{https://github.com/xingmingyu123456/KnowledgeSwapping}{https://github.com/xingmingyu123456/KnowledgeSwapping}.
Abstract:Image forgery localization, which centers on identifying tampered pixels within an image, has seen significant advancements. Traditional approaches often model this challenge as a variant of image segmentation, treating the binary segmentation of forged areas as the end product. We argue that the basic binary forgery mask is inadequate for explaining model predictions. It doesn't clarify why the model pinpoints certain areas and treats all forged pixels the same, making it hard to spot the most fake-looking parts. In this study, we mitigate the aforementioned limitations by generating salient region-focused interpretation for the forgery images. To support this, we craft a Multi-Modal Tramper Tracing (MMTT) dataset, comprising facial images manipulated using deepfake techniques and paired with manual, interpretable textual annotations. To harvest high-quality annotation, annotators are instructed to meticulously observe the manipulated images and articulate the typical characteristics of the forgery regions. Subsequently, we collect a dataset of 128,303 image-text pairs. Leveraging the MMTT dataset, we develop ForgeryTalker, an architecture designed for concurrent forgery localization and interpretation. ForgeryTalker first trains a forgery prompter network to identify the pivotal clues within the explanatory text. Subsequently, the region prompter is incorporated into multimodal large language model for finetuning to achieve the dual goals of localization and interpretation. Extensive experiments conducted on the MMTT dataset verify the superior performance of our proposed model. The dataset, code as well as pretrained checkpoints will be made publicly available to facilitate further research and ensure the reproducibility of our results.
Abstract:We present ASAP, a new framework for detecting and grounding multi-modal media manipulation (DGM4).Upon thorough examination, we observe that accurate fine-grained cross-modal semantic alignment between the image and text is vital for accurately manipulation detection and grounding. While existing DGM4 methods pay rare attention to the cross-modal alignment, hampering the accuracy of manipulation detecting to step further. To remedy this issue, this work targets to advance the semantic alignment learning to promote this task. Particularly, we utilize the off-the-shelf Multimodal Large-Language Models (MLLMs) and Large Language Models (LLMs) to construct paired image-text pairs, especially for the manipulated instances. Subsequently, a cross-modal alignment learning is performed to enhance the semantic alignment. Besides the explicit auxiliary clues, we further design a Manipulation-Guided Cross Attention (MGCA) to provide implicit guidance for augmenting the manipulation perceiving. With the grounding truth available during training, MGCA encourages the model to concentrate more on manipulated components while downplaying normal ones, enhancing the model's ability to capture manipulations. Extensive experiments are conducted on the DGM4 dataset, the results demonstrate that our model can surpass the comparison method with a clear margin.
Abstract:Continuous Generalized Category Discovery (C-GCD) aims to continually discover novel classes from unlabelled image sets while maintaining performance on old classes. In this paper, we propose a novel learning framework, dubbed Neighborhood Commonality-aware Evolution Network (NCENet) that conquers this task from the perspective of representation learning. Concretely, to learn discriminative representations for novel classes, a Neighborhood Commonality-aware Representation Learning (NCRL) is designed, which exploits local commonalities derived neighborhoods to guide the learning of representational differences between instances of different classes. To maintain the representation ability for old classes, a Bi-level Contrastive Knowledge Distillation (BCKD) module is designed, which leverages contrastive learning to perceive the learning and learned knowledge and conducts knowledge distillation. Extensive experiments conducted on CIFAR10, CIFAR100, and Tiny-ImageNet demonstrate the superior performance of NCENet compared to the previous state-of-the-art method. Particularly, in the last incremental learning session on CIFAR100, the clustering accuracy of NCENet outperforms the second-best method by a margin of 3.09\% on old classes and by a margin of 6.32\% on new classes. Our code will be publicly available at \href{https://github.com/xjtuYW/NCENet.git}{https://github.com/xjtuYW/NCENet.git}. \end{abstract}
Abstract:Text-based person search aims to retrieve specific individuals across camera networks using natural language descriptions. However, current benchmarks often exhibit biases towards common actions like walking or standing, neglecting the critical need for identifying abnormal behaviors in real-world scenarios. To meet such demands, we propose a new task, text-based person anomaly search, locating pedestrians engaged in both routine or anomalous activities via text. To enable the training and evaluation of this new task, we construct a large-scale image-text Pedestrian Anomaly Behavior (PAB) benchmark, featuring a broad spectrum of actions, e.g., running, performing, playing soccer, and the corresponding anomalies, e.g., lying, being hit, and falling of the same identity. The training set of PAB comprises 1,013,605 synthesized image-text pairs of both normalities and anomalies, while the test set includes 1,978 real-world image-text pairs. To validate the potential of PAB, we introduce a cross-modal pose-aware framework, which integrates human pose patterns with identity-based hard negative pair sampling. Extensive experiments on the proposed benchmark show that synthetic training data facilitates the fine-grained behavior retrieval in the real-world test set, while the proposed pose-aware method further improves the recall@1 by 2.88%. We will release the dataset, code, and checkpoints to facilitate further research and ensure the reproducibility of our results.
Abstract:Recent advancements in image-text matching have been notable, yet prevailing models predominantly cater to broad queries and struggle with accommodating fine-grained query intention. In this paper, we work towards the \textbf{E}ntity-centric \textbf{I}mage-\textbf{T}ext \textbf{M}atching (EITM), a task that the text and image involve specific entity-related information. The challenge of this task mainly lies in the larger semantic gap in entity association modeling, comparing with the general image-text matching problem.To narrow the huge semantic gap between the entity-centric text and the images, we take the fundamental CLIP as the backbone and devise a multimodal attentive contrastive learning framework to tam CLIP to adapt EITM problem, developing a model named EntityCLIP. The key of our multimodal attentive contrastive learning is to generate interpretive explanation text using Large Language Models (LLMs) as the bridge clues. In specific, we proceed by extracting explanatory text from off-the-shelf LLMs. This explanation text, coupled with the image and text, is then input into our specially crafted Multimodal Attentive Experts (MMAE) module, which effectively integrates explanation texts to narrow the gap of the entity-related text and image in a shared semantic space. Building on the enriched features derived from MMAE, we further design an effective Gated Integrative Image-text Matching (GI-ITM) strategy. The GI-ITM employs an adaptive gating mechanism to aggregate MMAE's features, subsequently applying image-text matching constraints to steer the alignment between the text and the image. Extensive experiments are conducted on three social media news benchmarks including N24News, VisualNews, and GoodNews, the results shows that our method surpasses the competition methods with a clear margin.
Abstract:Few-shot class-incremental learning (FSCIL) aims to incrementally recognize new classes using a few samples while maintaining the performance on previously learned classes. One of the effective methods to solve this challenge is to construct prototypical evolution classifiers. Despite the advancement achieved by most existing methods, the classifier weights are simply initialized using mean features. Because representations for new classes are weak and biased, we argue such a strategy is suboptimal. In this paper, we tackle this issue from two aspects. Firstly, thanks to the development of foundation models, we employ a foundation model, the CLIP, as the network pedestal to provide a general representation for each class. Secondly, to generate a more reliable and comprehensive instance representation, we propose a Knowledge Adapter (KA) module that summarizes the data-specific knowledge from training data and fuses it into the general representation. Additionally, to tune the knowledge learned from the base classes to the upcoming classes, we propose a mechanism of Incremental Pseudo Episode Learning (IPEL) by simulating the actual FSCIL. Taken together, our proposed method, dubbed as Knowledge Adaptation Network (KANet), achieves competitive performance on a wide range of datasets, including CIFAR100, CUB200, and ImageNet-R.