Abstract:Recent advancements in image-text matching have been notable, yet prevailing models predominantly cater to broad queries and struggle with accommodating fine-grained query intention. In this paper, we work towards the \textbf{E}ntity-centric \textbf{I}mage-\textbf{T}ext \textbf{M}atching (EITM), a task that the text and image involve specific entity-related information. The challenge of this task mainly lies in the larger semantic gap in entity association modeling, comparing with the general image-text matching problem.To narrow the huge semantic gap between the entity-centric text and the images, we take the fundamental CLIP as the backbone and devise a multimodal attentive contrastive learning framework to tam CLIP to adapt EITM problem, developing a model named EntityCLIP. The key of our multimodal attentive contrastive learning is to generate interpretive explanation text using Large Language Models (LLMs) as the bridge clues. In specific, we proceed by extracting explanatory text from off-the-shelf LLMs. This explanation text, coupled with the image and text, is then input into our specially crafted Multimodal Attentive Experts (MMAE) module, which effectively integrates explanation texts to narrow the gap of the entity-related text and image in a shared semantic space. Building on the enriched features derived from MMAE, we further design an effective Gated Integrative Image-text Matching (GI-ITM) strategy. The GI-ITM employs an adaptive gating mechanism to aggregate MMAE's features, subsequently applying image-text matching constraints to steer the alignment between the text and the image. Extensive experiments are conducted on three social media news benchmarks including N24News, VisualNews, and GoodNews, the results shows that our method surpasses the competition methods with a clear margin.
Abstract:Few-shot class-incremental learning (FSCIL) aims to incrementally recognize new classes using a few samples while maintaining the performance on previously learned classes. One of the effective methods to solve this challenge is to construct prototypical evolution classifiers. Despite the advancement achieved by most existing methods, the classifier weights are simply initialized using mean features. Because representations for new classes are weak and biased, we argue such a strategy is suboptimal. In this paper, we tackle this issue from two aspects. Firstly, thanks to the development of foundation models, we employ a foundation model, the CLIP, as the network pedestal to provide a general representation for each class. Secondly, to generate a more reliable and comprehensive instance representation, we propose a Knowledge Adapter (KA) module that summarizes the data-specific knowledge from training data and fuses it into the general representation. Additionally, to tune the knowledge learned from the base classes to the upcoming classes, we propose a mechanism of Incremental Pseudo Episode Learning (IPEL) by simulating the actual FSCIL. Taken together, our proposed method, dubbed as Knowledge Adaptation Network (KANet), achieves competitive performance on a wide range of datasets, including CIFAR100, CUB200, and ImageNet-R.
Abstract:Composed Image Retrieval (CIR) involves searching for target images based on an image-text pair query. While current methods treat this as a query-target matching problem, we argue that CIR triplets contain additional associations beyond this primary relation. In our paper, we identify two new relations within triplets, treating each triplet as a graph node. Firstly, we introduce the concept of text-bridged image alignment, where the query text serves as a bridge between the query image and the target image. We propose a hinge-based cross-attention mechanism to incorporate this relation into network learning. Secondly, we explore complementary text reasoning, considering CIR as a form of cross-modal retrieval where two images compose to reason about complementary text. To integrate these perspectives effectively, we design a twin attention-based compositor. By combining these complementary associations with the explicit query pair-target image relation, we establish a comprehensive set of constraints for CIR. Our framework, CaLa (Complementary Association Learning for Augmenting Composed Image Retrieval), leverages these insights. We evaluate CaLa on CIRR and FashionIQ benchmarks with multiple backbones, demonstrating its superiority in composed image retrieval.
Abstract:Federated learning (FL) is a popular privacy-preserving paradigm that enables distributed clients to collaboratively train models with a central server while keeping raw data locally. In practice, distinct model architectures, varying data distributions, and limited resources across local clients inevitably cause model performance degradation and a slowdown in convergence speed. However, existing FL methods can only solve some of the above heterogeneous challenges and have obvious performance limitations. Notably, a unified framework has not yet been explored to overcome these challenges. Accordingly, we propose FedHPL, a parameter-efficient unified $\textbf{Fed}$erated learning framework for $\textbf{H}$eterogeneous settings based on $\textbf{P}$rompt tuning and $\textbf{L}$ogit distillation. Specifically, we employ a local prompt tuning scheme that leverages a few learnable visual prompts to efficiently fine-tune the frozen pre-trained foundation model for downstream tasks, thereby accelerating training and improving model performance under limited local resources and data heterogeneity. Moreover, we design a global logit distillation scheme to handle the model heterogeneity and guide the local training. In detail, we leverage logits to implicitly capture local knowledge and design a weighted knowledge aggregation mechanism to generate global client-specific logits. We provide a theoretical guarantee on the generalization error bound for FedHPL. The experiments on various benchmark datasets under diverse settings of models and data demonstrate that our framework outperforms state-of-the-art FL approaches, with less computation overhead and training rounds.
Abstract:Generalized Class Discovery (GCD) aims to dynamically assign labels to unlabelled data partially based on knowledge learned from labelled data, where the unlabelled data may come from known or novel classes. The prevailing approach generally involves clustering across all data and learning conceptions by prototypical contrastive learning. However, existing methods largely hinge on the performance of clustering algorithms and are thus subject to their inherent limitations. Firstly, the estimated cluster number is often smaller than the ground truth, making the existing methods suffer from the lack of prototypes for comprehensive conception learning. To address this issue, we propose an adaptive probing mechanism that introduces learnable potential prototypes to expand cluster prototypes (centers). As there is no ground truth for the potential prototype, we develop a self-supervised prototype learning framework to optimize the potential prototype in an end-to-end fashion. Secondly, clustering is computationally intensive, and the conventional strategy of clustering both labelled and unlabelled instances exacerbates this issue. To counteract this inefficiency, we opt to cluster only the unlabelled instances and subsequently expand the cluster prototypes with our introduced potential prototypes to fast explore novel classes. Despite the simplicity of our proposed method, extensive empirical analysis on a wide range of datasets confirms that our method consistently delivers state-of-the-art results. Specifically, our method surpasses the nearest competitor by a significant margin of \textbf{9.7}$\%$ within the Stanford Cars dataset and \textbf{12$\times$} clustering efficiency within the Herbarium 19 dataset. We will make the code and checkpoints publicly available at \url{https://github.com/xjtuYW/PNP.git}.
Abstract:This paper presents a Geometric-Photometric Joint Alignment(GPJA) method, for accurately aligning human expressions by combining geometry and photometric information. Common practices for registering human heads typically involve aligning landmarks with facial template meshes using geometry processing approaches, but often overlook photometric consistency. GPJA overcomes this limitation by leveraging differentiable rendering to align vertices with target expressions, achieving joint alignment in geometry and photometric appearances automatically, without the need for semantic annotation or aligned meshes for training. It features a holistic rendering alignment strategy and a multiscale regularized optimization for robust and fast convergence. The method utilizes derivatives at vertex positions for supervision and employs a gradient-based algorithm which guarantees smoothness and avoids topological defects during the geometry evolution. Experimental results demonstrate faithful alignment under various expressions, surpassing the conventional ICP-based methods and the state-of-the-art deep learning based method. In practical, our method enhances the efficiency of obtaining topology-consistent face models from multi-view stereo facial scanning.
Abstract:Despite the remarkable progress in text-to-video generation, existing diffusion-based models often exhibit instability in terms of noise during inference. Specifically, when different noises are fed for the given text, these models produce videos that differ significantly in terms of both frame quality and temporal consistency. With this observation, we posit that there exists an optimal noise matched to each textual input; however, the widely adopted strategies of random noise sampling often fail to capture it. In this paper, we argue that the optimal noise can be approached through inverting the groundtruth video using the established noise-video mapping derived from the diffusion model. Nevertheless, the groundtruth video for the text prompt is not available during inference. To address this challenge, we propose to approximate the optimal noise via a search and inversion pipeline. Given a text prompt, we initially search for a video from a predefined candidate pool that closely relates to the text prompt. Subsequently, we invert the searched video into the noise space, which serves as an improved noise prompt for the textual input. In addition to addressing noise, we also observe that the text prompt with richer details often leads to higher-quality videos. Motivated by this, we further design a semantic-preserving rewriter to enrich the text prompt, where a reference-guided rewriting is devised for reasonable details compensation, and a denoising with a hybrid semantics strategy is proposed to preserve the semantic consistency. Extensive experiments on the WebVid-10M benchmark show that our proposed method can improve the text-to-video models with a clear margin, while introducing no optimization burden.
Abstract:Composed image retrieval, a task involving the search for a target image using a reference image and a complementary text as the query, has witnessed significant advancements owing to the progress made in cross-modal modeling. Unlike the general image-text retrieval problem with only one alignment relation, i.e., image-text, we argue for the existence of two types of relations in composed image retrieval. The explicit relation pertains to the reference image & complementary text-target image, which is commonly exploited by existing methods. Besides this intuitive relation, the observations during our practice have uncovered another implicit yet crucial relation, i.e., reference image & target image-complementary text, since we found that the complementary text can be inferred by studying the relation between the target image and the reference image. Regrettably, existing methods largely focus on leveraging the explicit relation to learn their networks, while overlooking the implicit relation. In response to this weakness, We propose a new framework for composed image retrieval, termed dual relation alignment, which integrates both explicit and implicit relations to fully exploit the correlations among the triplets. Specifically, we design a vision compositor to fuse reference image and target image at first, then the resulted representation will serve two roles: (1) counterpart for semantic alignment with the complementary text and (2) compensation for the complementary text to boost the explicit relation modeling, thereby implant the implicit relation into the alignment learning. Our method is evaluated on two popular datasets, CIRR and FashionIQ, through extensive experiments. The results confirm the effectiveness of our dual-relation learning in substantially enhancing composed image retrieval performance.
Abstract:We present DiverseMotion, a new approach for synthesizing high-quality human motions conditioned on textual descriptions while preserving motion diversity.Despite the recent significant process in text-based human motion generation,existing methods often prioritize fitting training motions at the expense of action diversity. Consequently, striking a balance between motion quality and diversity remains an unresolved challenge. This problem is compounded by two key factors: 1) the lack of diversity in motion-caption pairs in existing benchmarks and 2) the unilateral and biased semantic understanding of the text prompt, focusing primarily on the verb component while neglecting the nuanced distinctions indicated by other words.In response to the first issue, we construct a large-scale Wild Motion-Caption dataset (WMC) to extend the restricted action boundary of existing well-annotated datasets, enabling the learning of diverse motions through a more extensive range of actions. To this end, a motion BLIP is trained upon a pretrained vision-language model, then we automatically generate diverse motion captions for the collected motion sequences. As a result, we finally build a dataset comprising 8,888 motions coupled with 141k text.To comprehensively understand the text command, we propose a Hierarchical Semantic Aggregation (HSA) module to capture the fine-grained semantics.Finally,we involve the above two designs into an effective Motion Discrete Diffusion (MDD) framework to strike a balance between motion quality and diversity. Extensive experiments on HumanML3D and KIT-ML show that our DiverseMotion achieves the state-of-the-art motion quality and competitive motion diversity. Dataset, code, and pretrained models will be released to reproduce all of our results.
Abstract:Few-shot class-incremental learning (FSCIL) aims to continually learn new classes using a few samples while not forgetting the old classes. The key of this task is effective knowledge transfer from the base session to the incremental sessions. Despite the advance of existing FSCIL methods, the proposed knowledge transfer learning schemes are sub-optimal due to the insufficient optimization for the model's plasticity. To address this issue, we propose a Random Episode Sampling and Augmentation (RESA) strategy that relies on diverse pseudo incremental tasks as agents to achieve the knowledge transfer. Concretely, RESA mimics the real incremental setting and constructs pseudo incremental tasks globally and locally, where the global pseudo incremental tasks are designed to coincide with the learning objective of FSCIL and the local pseudo incremental tasks are designed to improve the model's plasticity, respectively. Furthermore, to make convincing incremental predictions, we introduce a complementary model with a squared Euclidean-distance classifier as the auxiliary module, which couples with the widely used cosine classifier to form our whole architecture. By such a way, equipped with model decoupling strategy, we can maintain the model's stability while enhancing the model's plasticity. Extensive quantitative and qualitative experiments on three popular FSCIL benchmark datasets demonstrate that our proposed method, named Knowledge Transfer-driven Relation Complementation Network (KT-RCNet), outperforms almost all prior methods. More precisely, the average accuracy of our proposed KT-RCNet outperforms the second-best method by a margin of 5.26%, 3.49%, and 2.25% on miniImageNet, CIFAR100, and CUB200, respectively. Our code is available at https://github.com/YeZiLaiXi/KT-RCNet.git.