Abstract:Machine learning has been used to identify phase transitions in a variety of physical systems. However, there is still a lack of relevant research on non-Bloch energy braiding in non-Hermitian systems. In this work, we study non-Bloch energy braiding in one-dimensional non-Hermitian systems using unsupervised and supervised methods. In unsupervised learning, we use diffusion maps to successfully identify non-Bloch energy braiding without any prior knowledge and combine it with k-means to cluster different topological elements into clusters, such as Unlink and Hopf link. In supervised learning, we train a Convolutional Neural Network (CNN) based on Bloch energy data to predict not only Bloch energy braiding but also non-Bloch energy braiding with an accuracy approaching 100%. By analysing the CNN, we can ascertain that the network has successfully acquired the ability to recognise the braiding topology of the energy bands. The present study demonstrates the considerable potential of machine learning in the identification of non-Hermitian topological phases and energy braiding.
Abstract:Diffusion models excel at producing high-quality images; however, scaling to higher resolutions, such as 4K, often results in over-smoothed content, structural distortions, and repetitive patterns. To this end, we introduce ResMaster, a novel, training-free method that empowers resolution-limited diffusion models to generate high-quality images beyond resolution restrictions. Specifically, ResMaster leverages a low-resolution reference image created by a pre-trained diffusion model to provide structural and fine-grained guidance for crafting high-resolution images on a patch-by-patch basis. To ensure a coherent global structure, ResMaster meticulously aligns the low-frequency components of high-resolution patches with the low-resolution reference at each denoising step. For fine-grained guidance, tailored image prompts based on the low-resolution reference and enriched textual prompts produced by a vision-language model are incorporated. This approach could significantly mitigate local pattern distortions and improve detail refinement. Extensive experiments validate that ResMaster sets a new benchmark for high-resolution image generation and demonstrates promising efficiency. The project page is https://shuweis.github.io/ResMaster .
Abstract:Blind Omnidirectional Image Quality Assessment (BOIQA) aims to objectively assess the human perceptual quality of omnidirectional images (ODIs) without relying on pristine-quality image information. It is becoming more significant with the increasing advancement of virtual reality (VR) technology. However, the quality assessment of ODIs is severely hampered by the fact that the existing BOIQA pipeline lacks the modeling of the observer's browsing process. To tackle this issue, we propose a novel multi-sequence network for BOIQA called Assessor360, which is derived from the realistic multi-assessor ODI quality assessment procedure. Specifically, we propose a generalized Recursive Probability Sampling (RPS) method for the BOIQA task, combining content and detailed information to generate multiple pseudo viewport sequences from a given starting point. Additionally, we design a Multi-scale Feature Aggregation (MFA) module with Distortion-aware Block (DAB) to fuse distorted and semantic features of each viewport. We also devise TMM to learn the viewport transition in the temporal domain. Extensive experimental results demonstrate that Assessor360 outperforms state-of-the-art methods on multiple OIQA datasets.
Abstract:The recurrent structure is a prevalent framework for the task of video super-resolution, which models the temporal dependency between frames via hidden states. When applied to real-world scenarios with unknown and complex degradations, hidden states tend to contain unpleasant artifacts and propagate them to restored frames. In this circumstance, our analyses show that such artifacts can be largely alleviated when the hidden state is replaced with a cleaner counterpart. Based on the observations, we propose a Hidden State Attention (HSA) module to mitigate artifacts in real-world video super-resolution. Specifically, we first adopt various cheap filters to produce a hidden state pool. For example, Gaussian blur filters are for smoothing artifacts while sharpening filters are for enhancing details. To aggregate a new hidden state that contains fewer artifacts from the hidden state pool, we devise a Selective Cross Attention (SCA) module, in which the attention between input features and each hidden state is calculated. Equipped with HSA, our proposed method, namely FastRealVSR, is able to achieve 2x speedup while obtaining better performance than Real-BasicVSR. Codes will be available at https://github.com/TencentARC/FastRealVSR
Abstract:The alignment of adjacent frames is considered an essential operation in video super-resolution (VSR). Advanced VSR models, including the latest VSR Transformers, are generally equipped with well-designed alignment modules. However, the progress of the self-attention mechanism may violate this common sense. In this paper, we rethink the role of alignment in VSR Transformers and make several counter-intuitive observations. Our experiments show that: (i) VSR Transformers can directly utilize multi-frame information from unaligned videos, and (ii) existing alignment methods are sometimes harmful to VSR Transformers. These observations indicate that we can further improve the performance of VSR Transformers simply by removing the alignment module and adopting a larger attention window. Nevertheless, such designs will dramatically increase the computational burden, and cannot deal with large motions. Therefore, we propose a new and efficient alignment method called patch alignment, which aligns image patches instead of pixels. VSR Transformers equipped with patch alignment could demonstrate state-of-the-art performance on multiple benchmarks. Our work provides valuable insights on how multi-frame information is used in VSR and how to select alignment methods for different networks/datasets. Codes and models will be released at https://github.com/XPixelGroup/RethinkVSRAlignment.
Abstract:This paper reviews the NTIRE 2022 Challenge on Super-Resolution and Quality Enhancement of Compressed Video. In this challenge, we proposed the LDV 2.0 dataset, which includes the LDV dataset (240 videos) and 95 additional videos. This challenge includes three tracks. Track 1 aims at enhancing the videos compressed by HEVC at a fixed QP. Track 2 and Track 3 target both the super-resolution and quality enhancement of HEVC compressed video. They require x2 and x4 super-resolution, respectively. The three tracks totally attract more than 600 registrations. In the test phase, 8 teams, 8 teams and 12 teams submitted the final results to Tracks 1, 2 and 3, respectively. The proposed methods and solutions gauge the state-of-the-art of super-resolution and quality enhancement of compressed video. The proposed LDV 2.0 dataset is available at https://github.com/RenYang-home/LDV_dataset. The homepage of this challenge (including open-sourced codes) is at https://github.com/RenYang-home/NTIRE22_VEnh_SR.
Abstract:Image quality assessment (IQA) algorithm aims to quantify the human perception of image quality. Unfortunately, there is a performance drop when assessing the distortion images generated by generative adversarial network (GAN) with seemingly realistic texture. In this work, we conjecture that this maladaptation lies in the backbone of IQA models, where patch-level prediction methods use independent image patches as input to calculate their scores separately, but lack spatial relationship modeling among image patches. Therefore, we propose an Attention-based Hybrid Image Quality Assessment Network (AHIQ) to deal with the challenge and get better performance on the GAN-based IQA task. Firstly, we adopt a two-branch architecture, including a vision transformer (ViT) branch and a convolutional neural network (CNN) branch for feature extraction. The hybrid architecture combines interaction information among image patches captured by ViT and local texture details from CNN. To make the features from shallow CNN more focused on the visually salient region, a deformable convolution is applied with the help of semantic information from the ViT branch. Finally, we use a patch-wise score prediction module to obtain the final score. The experiments show that our model outperforms the state-of-the-art methods on four standard IQA datasets and AHIQ ranked first on the Full Reference (FR) track of the NTIRE 2022 Perceptual Image Quality Assessment Challenge.
Abstract:No-Reference Image Quality Assessment (NR-IQA) aims to assess the perceptual quality of images in accordance with human subjective perception. Unfortunately, existing NR-IQA methods are far from meeting the needs of predicting accurate quality scores on GAN-based distortion images. To this end, we propose Multi-dimension Attention Network for no-reference Image Quality Assessment (MANIQA) to improve the performance on GAN-based distortion. We firstly extract features via ViT, then to strengthen global and local interactions, we propose the Transposed Attention Block (TAB) and the Scale Swin Transformer Block (SSTB). These two modules apply attention mechanisms across the channel and spatial dimension, respectively. In this multi-dimensional manner, the modules cooperatively increase the interaction among different regions of images globally and locally. Finally, a dual branch structure for patch-weighted quality prediction is applied to predict the final score depending on the weight of each patch's score. Experimental results demonstrate that MANIQA outperforms state-of-the-art methods on four standard datasets (LIVE, TID2013, CSIQ, and KADID-10K) by a large margin. Besides, our method ranked first place in the final testing phase of the NTIRE 2022 Perceptual Image Quality Assessment Challenge Track 2: No-Reference. Codes and models are available at https://github.com/IIGROUP/MANIQA.
Abstract:This paper reports on the NTIRE 2021 challenge on perceptual image quality assessment (IQA), held in conjunction with the New Trends in Image Restoration and Enhancement workshop (NTIRE) workshop at CVPR 2021. As a new type of image processing technology, perceptual image processing algorithms based on Generative Adversarial Networks (GAN) have produced images with more realistic textures. These output images have completely different characteristics from traditional distortions, thus pose a new challenge for IQA methods to evaluate their visual quality. In comparison with previous IQA challenges, the training and testing datasets in this challenge include the outputs of perceptual image processing algorithms and the corresponding subjective scores. Thus they can be used to develop and evaluate IQA methods on GAN-based distortions. The challenge has 270 registered participants in total. In the final testing stage, 13 participating teams submitted their models and fact sheets. Almost all of them have achieved much better results than existing IQA methods, while the winning method can demonstrate state-of-the-art performance.
Abstract:Image quality assessment (IQA) aims to assess the perceptual quality of images. The outputs of the IQA algorithms are expected to be consistent with human subjective perception. In image restoration and enhancement tasks, images generated by generative adversarial networks (GAN) can achieve better visual performance than traditional CNN-generated images, although they have spatial shift and texture noise. Unfortunately, the existing IQA methods have unsatisfactory performance on the GAN-based distortion partially because of their low tolerance to spatial misalignment. To this end, we propose the reference-oriented deformable convolution, which can improve the performance of an IQA network on GAN-based distortion by adaptively considering this misalignment. We further propose a patch-level attention module to enhance the interaction among different patch regions, which are processed independently in previous patch-based methods. The modified residual block is also proposed by applying modifications to the classic residual block to construct a patch-region-based baseline called WResNet. Equipping this baseline with the two proposed modules, we further propose Region-Adaptive Deformable Network (RADN). The experiment results on the NTIRE 2021 Perceptual Image Quality Assessment Challenge dataset show the superior performance of RADN, and the ensemble approach won fourth place in the final testing phase of the challenge. Code is available at https://github.com/IIGROUP/RADN.