Abstract:Character image animation, which generates high-quality videos from a reference image and target pose sequence, has seen significant progress in recent years. However, most existing methods only apply to human figures, which usually do not generalize well on anthropomorphic characters commonly used in industries like gaming and entertainment. Our in-depth analysis suggests to attribute this limitation to their insufficient modeling of motion, which is unable to comprehend the movement pattern of the driving video, thus imposing a pose sequence rigidly onto the target character. To this end, this paper proposes Animate-X, a universal animation framework based on LDM for various character types (collectively named X), including anthropomorphic characters. To enhance motion representation, we introduce the Pose Indicator, which captures comprehensive motion pattern from the driving video through both implicit and explicit manner. The former leverages CLIP visual features of a driving video to extract its gist of motion, like the overall movement pattern and temporal relations among motions, while the latter strengthens the generalization of LDM by simulating possible inputs in advance that may arise during inference. Moreover, we introduce a new Animated Anthropomorphic Benchmark (A^2Bench) to evaluate the performance of Animate-X on universal and widely applicable animation images. Extensive experiments demonstrate the superiority and effectiveness of Animate-X compared to state-of-the-art methods.
Abstract:Achieving disentangled control over multiple facial motions and accommodating diverse input modalities greatly enhances the application and entertainment of the talking head generation. This necessitates a deep exploration of the decoupling space for facial features, ensuring that they a) operate independently without mutual interference and b) can be preserved to share with different modal input, both aspects often neglected in existing methods. To address this gap, this paper proposes a novel Efficient Disentanglement framework for Talking head generation (EDTalk). Our framework enables individual manipulation of mouth shape, head pose, and emotional expression, conditioned on video or audio inputs. Specifically, we employ three lightweight modules to decompose the facial dynamics into three distinct latent spaces representing mouth, pose, and expression, respectively. Each space is characterized by a set of learnable bases whose linear combinations define specific motions. To ensure independence and accelerate training, we enforce orthogonality among bases and devise an efficient training strategy to allocate motion responsibilities to each space without relying on external knowledge. The learned bases are then stored in corresponding banks, enabling shared visual priors with audio input. Furthermore, considering the properties of each space, we propose an Audio-to-Motion module for audio-driven talking head synthesis. Experiments are conducted to demonstrate the effectiveness of EDTalk. We recommend watching the project website: https://tanshuai0219.github.io/EDTalk/
Abstract:Generating stylized talking head with diverse head motions is crucial for achieving natural-looking videos but still remains challenging. Previous works either adopt a regressive method to capture the speaking style, resulting in a coarse style that is averaged across all training data, or employ a universal network to synthesize videos with different styles which causes suboptimal performance. To address these, we propose a novel dynamic-weight method, namely Say Anything withAny Style (SAAS), which queries the discrete style representation via a generative model with a learned style codebook. Specifically, we develop a multi-task VQ-VAE that incorporates three closely related tasks to learn a style codebook as a prior for style extraction. This discrete prior, along with the generative model, enhances the precision and robustness when extracting the speaking styles of the given style clips. By utilizing the extracted style, a residual architecture comprising a canonical branch and style-specific branch is employed to predict the mouth shapes conditioned on any driving audio while transferring the speaking style from the source to any desired one. To adapt to different speaking styles, we steer clear of employing a universal network by exploring an elaborate HyperStyle to produce the style-specific weights offset for the style branch. Furthermore, we construct a pose generator and a pose codebook to store the quantized pose representation, allowing us to sample diverse head motions aligned with the audio and the extracted style. Experiments demonstrate that our approach surpasses state-of-theart methods in terms of both lip-synchronization and stylized expression. Besides, we extend our SAAS to video-driven style editing field and achieve satisfactory performance.
Abstract:Although automatically animating audio-driven talking heads has recently received growing interest, previous efforts have mainly concentrated on achieving lip synchronization with the audio, neglecting two crucial elements for generating expressive videos: emotion style and art style. In this paper, we present an innovative audio-driven talking face generation method called Style2Talker. It involves two stylized stages, namely Style-E and Style-A, which integrate text-controlled emotion style and picture-controlled art style into the final output. In order to prepare the scarce emotional text descriptions corresponding to the videos, we propose a labor-free paradigm that employs large-scale pretrained models to automatically annotate emotional text labels for existing audiovisual datasets. Incorporating the synthetic emotion texts, the Style-E stage utilizes a large-scale CLIP model to extract emotion representations, which are combined with the audio, serving as the condition for an efficient latent diffusion model designed to produce emotional motion coefficients of a 3DMM model. Moving on to the Style-A stage, we develop a coefficient-driven motion generator and an art-specific style path embedded in the well-known StyleGAN. This allows us to synthesize high-resolution artistically stylized talking head videos using the generated emotional motion coefficients and an art style source picture. Moreover, to better preserve image details and avoid artifacts, we provide StyleGAN with the multi-scale content features extracted from the identity image and refine its intermediate feature maps by the designed content encoder and refinement network, respectively. Extensive experimental results demonstrate our method outperforms existing state-of-the-art methods in terms of audio-lip synchronization and performance of both emotion style and art style.
Abstract:Generating emotional talking faces is a practical yet challenging endeavor. To create a lifelike avatar, we draw upon two critical insights from a human perspective: 1) The connection between audio and the non-deterministic facial dynamics, encompassing expressions, blinks, poses, should exhibit synchronous and one-to-many mapping. 2) Vibrant expressions are often accompanied by emotion-aware high-definition (HD) textures and finely detailed teeth. However, both aspects are frequently overlooked by existing methods. To this end, this paper proposes using normalizing Flow and Vector-Quantization modeling to produce emotional talking faces that satisfy both insights concurrently (FlowVQTalker). Specifically, we develop a flow-based coefficient generator that encodes the dynamics of facial emotion into a multi-emotion-class latent space represented as a mixture distribution. The generation process commences with random sampling from the modeled distribution, guided by the accompanying audio, enabling both lip-synchronization and the uncertain nonverbal facial cues generation. Furthermore, our designed vector-quantization image generator treats the creation of expressive facial images as a code query task, utilizing a learned codebook to provide rich, high-quality textures that enhance the emotional perception of the results. Extensive experiments are conducted to showcase the effectiveness of our approach.