Abstract:This paper investigates the best known bounds on the quadratic Gaussian distortion-rate-perception function with limited common randomness for the Kullback-Leibler divergence-based perception measure, as well as their counterparts for the squared Wasserstein-2 distance-based perception measure, recently established by Xie et al. These bounds are shown to be nondegenerate in the sense that they cannot be deduced from each other via a refined version of Talagrand's transportation inequality. On the other hand, an improved lower bound is established when the perception measure is given by the squared Wasserstein-2 distance. In addition, it is revealed by exploiting the connection between rate-distortion-perception coding and entropy-constrained scalar quantization that all the aforementioned bounds are generally not tight in the weak perception constraint regime.
Abstract:This paper reviews the NTIRE 2024 RAW Image Super-Resolution Challenge, highlighting the proposed solutions and results. New methods for RAW Super-Resolution could be essential in modern Image Signal Processing (ISP) pipelines, however, this problem is not as explored as in the RGB domain. Th goal of this challenge is to upscale RAW Bayer images by 2x, considering unknown degradations such as noise and blur. In the challenge, a total of 230 participants registered, and 45 submitted results during thee challenge period. The performance of the top-5 submissions is reviewed and provided here as a gauge for the current state-of-the-art in RAW Image Super-Resolution.
Abstract:The distortion-rate function of output-constrained lossy source coding with limited common randomness is analyzed for the special case of squared error distortion measure. An explicit expression is obtained when both source and reconstruction distributions are Gaussian. This further leads to a partial characterization of the information-theoretic limit of quadratic Gaussian rate-distortion-perception coding with the perception measure given by Kullback-Leibler divergence or squared quadratic Wasserstein distance.
Abstract:Stereo Image Super-Resolution (stereoSR) has attracted significant attention in recent years due to the extensive deployment of dual cameras in mobile phones, autonomous vehicles and robots. In this work, we propose a new StereoSR method, named SwinFSR, based on an extension of SwinIR, originally designed for single image restoration, and the frequency domain knowledge obtained by the Fast Fourier Convolution (FFC). Specifically, to effectively gather global information, we modify the Residual Swin Transformer blocks (RSTBs) in SwinIR by explicitly incorporating the frequency domain knowledge using the FFC and employing the resulting residual Swin Fourier Transformer blocks (RSFTBs) for feature extraction. Besides, for the efficient and accurate fusion of stereo views, we propose a new cross-attention module referred to as RCAM, which achieves highly competitive performance while requiring less computational cost than the state-of-the-art cross-attention modules. Extensive experimental results and ablation studies demonstrate the effectiveness and efficiency of our proposed SwinFSR.
Abstract:Recent years have witnessed an increased interest in image dehazing. Many deep learning methods have been proposed to tackle this challenge, and have made significant accomplishments dealing with homogeneous haze. However, these solutions cannot maintain comparable performance when they are applied to images with non-homogeneous haze, e.g., NH-HAZE23 dataset introduced by NTIRE challenges. One of the reasons for such failures is that non-homogeneous haze does not obey one of the assumptions that is required for modeling homogeneous haze. In addition, a large number of pairs of non-homogeneous hazy image and the clean counterpart is required using traditional end-to-end training approaches, while NH-HAZE23 dataset is of limited quantities. Although it is possible to augment the NH-HAZE23 dataset by leveraging other non-homogeneous dehazing datasets, we observe that it is necessary to design a proper data-preprocessing approach that reduces the distribution gaps between the target dataset and the augmented one. This finding indeed aligns with the essence of data-centric AI. With a novel network architecture and a principled data-preprocessing approach that systematically enhances data quality, we present an innovative dehazing method. Specifically, we apply RGB-channel-wise transformations on the augmented datasets, and incorporate the state-of-the-art transformers as the backbone in the two-branch framework. We conduct extensive experiments and ablation study to demonstrate the effectiveness of our proposed method.
Abstract:This paper reviews the first NTIRE challenge on quality enhancement of compressed video, with a focus on the proposed methods and results. In this challenge, the new Large-scale Diverse Video (LDV) dataset is employed. The challenge has three tracks. Tracks 1 and 2 aim at enhancing the videos compressed by HEVC at a fixed QP, while Track 3 is designed for enhancing the videos compressed by x265 at a fixed bit-rate. Besides, the quality enhancement of Tracks 1 and 3 targets at improving the fidelity (PSNR), and Track 2 targets at enhancing the perceptual quality. The three tracks totally attract 482 registrations. In the test phase, 12 teams, 8 teams and 11 teams submitted the final results of Tracks 1, 2 and 3, respectively. The proposed methods and solutions gauge the state-of-the-art of video quality enhancement. The homepage of the challenge: https://github.com/RenYang-home/NTIRE21_VEnh