Abstract:This paper investigates the best known bounds on the quadratic Gaussian distortion-rate-perception function with limited common randomness for the Kullback-Leibler divergence-based perception measure, as well as their counterparts for the squared Wasserstein-2 distance-based perception measure, recently established by Xie et al. These bounds are shown to be nondegenerate in the sense that they cannot be deduced from each other via a refined version of Talagrand's transportation inequality. On the other hand, an improved lower bound is established when the perception measure is given by the squared Wasserstein-2 distance. In addition, it is revealed by exploiting the connection between rate-distortion-perception coding and entropy-constrained scalar quantization that all the aforementioned bounds are generally not tight in the weak perception constraint regime.
Abstract:The distortion-rate function of output-constrained lossy source coding with limited common randomness is analyzed for the special case of squared error distortion measure. An explicit expression is obtained when both source and reconstruction distributions are Gaussian. This further leads to a partial characterization of the information-theoretic limit of quadratic Gaussian rate-distortion-perception coding with the perception measure given by Kullback-Leibler divergence or squared quadratic Wasserstein distance.
Abstract:The internet activity records (IARs) of a mobile cellular network posses significant information which can be exploited to identify the network's efficacy and the mobile users' behavior. In this work, we extract useful information from the IAR data and identify a healthy predictability of spatio-temporal pattern within the network traffic. The information extracted is helpful for network operators to plan effective network configuration and perform management and optimization of network's resources. We report experimentation on spatiotemporal analysis of IAR data of the Telecom Italia. Based on this, we present mobile traffic partitioning scheme. Experimental results of the proposed model is helpful in modelling and partitioning of network traffic patterns.
Abstract:Mobile networks possess information about the users as well as the network. Such information is useful for making the network end-to-end visible and intelligent. Big data analytics can efficiently analyze user and network information, unearth meaningful insights with the help of machine learning tools. Utilizing big data analytics and machine learning, this work contributes in three ways. First, we utilize the call detail records (CDR) data to detect anomalies in the network. For authentication and verification of anomalies, we use k-means clustering, an unsupervised machine learning algorithm. Through effective detection of anomalies, we can proceed to suitable design for resource distribution as well as fault detection and avoidance. Second, we prepare anomaly-free data by removing anomalous activities and train a neural network model. By passing anomaly and anomaly-free data through this model, we observe the effect of anomalous activities in training of the model and also observe mean square error of anomaly and anomaly free data. Lastly, we use an autoregressive integrated moving average (ARIMA) model to predict future traffic for a user. Through simple visualization, we show that anomaly free data better generalizes the learning models and performs better on prediction task.