Abstract:Object manipulation is a common component of everyday tasks, but learning to manipulate objects from high-dimensional observations presents significant challenges. These challenges are heightened in multi-object environments due to the combinatorial complexity of the state space as well as of the desired behaviors. While recent approaches have utilized large-scale offline data to train models from pixel observations, achieving performance gains through scaling, these methods struggle with compositional generalization in unseen object configurations with constrained network and dataset sizes. To address these issues, we propose a novel behavioral cloning (BC) approach that leverages object-centric representations and an entity-centric Transformer with diffusion-based optimization, enabling efficient learning from offline image data. Our method first decomposes observations into an object-centric representation, which is then processed by our entity-centric Transformer that computes attention at the object level, simultaneously predicting object dynamics and the agent's actions. Combined with the ability of diffusion models to capture multi-modal behavior distributions, this results in substantial performance improvements in multi-object tasks and, more importantly, enables compositional generalization. We present BC agents capable of zero-shot generalization to tasks with novel compositions of objects and goals, including larger numbers of objects than seen during training. We provide video rollouts on our webpage: https://sites.google.com/view/ec-diffuser.
Abstract:Two substantial technological advances have reshaped the public square in recent decades: first with the advent of the internet and second with the recent introduction of large language models (LLMs). LLMs offer opportunities for a paradigm shift towards more decentralized, participatory online spaces that can be used to facilitate deliberative dialogues at scale, but also create risks of exacerbating societal schisms. Here, we explore four applications of LLMs to improve digital public squares: collective dialogue systems, bridging systems, community moderation, and proof-of-humanity systems. Building on the input from over 70 civil society experts and technologists, we argue that LLMs both afford promising opportunities to shift the paradigm for conversations at scale and pose distinct risks for digital public squares. We lay out an agenda for future research and investments in AI that will strengthen digital public squares and safeguard against potential misuses of AI.
Abstract:Describing skills in natural language has the potential to provide an accessible way to inject human knowledge about decision-making into an AI system. We present MaestroMotif, a method for AI-assisted skill design, which yields high-performing and adaptable agents. MaestroMotif leverages the capabilities of Large Language Models (LLMs) to effectively create and reuse skills. It first uses an LLM's feedback to automatically design rewards corresponding to each skill, starting from their natural language description. Then, it employs an LLM's code generation abilities, together with reinforcement learning, for training the skills and combining them to implement complex behaviors specified in language. We evaluate MaestroMotif using a suite of complex tasks in the NetHack Learning Environment (NLE), demonstrating that it surpasses existing approaches in both performance and usability.
Abstract:Rewards remain an uninterpretable way to specify tasks for Reinforcement Learning, as humans are often unable to predict the optimal behavior of any given reward function, leading to poor reward design and reward hacking. Language presents an appealing way to communicate intent to agents and bypass reward design, but prior efforts to do so have been limited by costly and unscalable labeling efforts. In this work, we propose a method for a completely unsupervised alternative to grounding language instructions in a zero-shot manner to obtain policies. We present a solution that takes the form of imagine, project, and imitate: The agent imagines the observation sequence corresponding to the language description of a task, projects the imagined sequence to our target domain, and grounds it to a policy. Video-language models allow us to imagine task descriptions that leverage knowledge of tasks learned from internet-scale video-text mappings. The challenge remains to ground these generations to a policy. In this work, we show that we can achieve a zero-shot language-to-behavior policy by first grounding the imagined sequences in real observations of an unsupervised RL agent and using a closed-form solution to imitation learning that allows the RL agent to mimic the grounded observations. Our method, RLZero, is the first to our knowledge to show zero-shot language to behavior generation abilities without any supervision on a variety of tasks on simulated domains. We further show that RLZero can also generate policies zero-shot from cross-embodied videos such as those scraped from YouTube.
Abstract:Having explored an environment, intelligent agents should be able to transfer their knowledge to most downstream tasks within that environment. Referred to as "zero-shot learning," this ability remains elusive for general-purpose reinforcement learning algorithms. While recent works have attempted to produce zero-shot RL agents, they make assumptions about the nature of the tasks or the structure of the MDP. We present \emph{Proto Successor Measure}: the basis set for all possible solutions of Reinforcement Learning in a dynamical system. We provably show that any possible policy can be represented using an affine combination of these policy independent basis functions. Given a reward function at test time, we simply need to find the right set of linear weights to combine these basis corresponding to the optimal policy. We derive a practical algorithm to learn these basis functions using only interaction data from the environment and show that our approach can produce the optimal policy at test time for any given reward function without additional environmental interactions. Project page: https://agarwalsiddhant10.github.io/projects/psm.html.
Abstract:Language models trained on diverse datasets unlock generalization by in-context learning. Reinforcement Learning (RL) policies can achieve a similar effect by meta-learning within the memory of a sequence model. However, meta-RL research primarily focuses on adapting to minor variations of a single task. It is difficult to scale towards more general behavior without confronting challenges in multi-task optimization, and few solutions are compatible with meta-RL's goal of learning from large training sets of unlabeled tasks. To address this challenge, we revisit the idea that multi-task RL is bottlenecked by imbalanced training losses created by uneven return scales across different tasks. We build upon recent advancements in Transformer-based (in-context) meta-RL and evaluate a simple yet scalable solution where both an agent's actor and critic objectives are converted to classification terms that decouple optimization from the current scale of returns. Large-scale comparisons in Meta-World ML45, Multi-Game Procgen, Multi-Task POPGym, Multi-Game Atari, and BabyAI find that this design unlocks significant progress in online multi-task adaptation and memory problems without explicit task labels.
Abstract:Automatically synthesizing dense rewards from natural language descriptions is a promising paradigm in reinforcement learning (RL), with applications to sparse reward problems, open-ended exploration, and hierarchical skill design. Recent works have made promising steps by exploiting the prior knowledge of large language models (LLMs). However, these approaches suffer from important limitations: they are either not scalable to problems requiring billions of environment samples; or are limited to reward functions expressible by compact code, which may require source code and have difficulty capturing nuanced semantics; or require a diverse offline dataset, which may not exist or be impossible to collect. In this work, we address these limitations through a combination of algorithmic and systems-level contributions. We propose ONI, a distributed architecture that simultaneously learns an RL policy and an intrinsic reward function using LLM feedback. Our approach annotates the agent's collected experience via an asynchronous LLM server, which is then distilled into an intrinsic reward model. We explore a range of algorithmic choices for reward modeling with varying complexity, including hashing, classification, and ranking models. By studying their relative tradeoffs, we shed light on questions regarding intrinsic reward design for sparse reward problems. Our approach achieves state-of-the-art performance across a range of challenging, sparse reward tasks from the NetHack Learning Environment in a simple unified process, solely using the agent's gathered experience, without requiring external datasets nor source code. We make our code available at \url{URL} (coming soon).
Abstract:Unsupervised skill discovery carries the promise that an intelligent agent can learn reusable skills through autonomous, reward-free environment interaction. Existing unsupervised skill discovery methods learn skills by encouraging distinguishable behaviors that cover diverse states. However, in complex environments with many state factors (e.g., household environments with many objects), learning skills that cover all possible states is impossible, and naively encouraging state diversity often leads to simple skills that are not ideal for solving downstream tasks. This work introduces Skill Discovery from Local Dependencies (Skild), which leverages state factorization as a natural inductive bias to guide the skill learning process. The key intuition guiding Skild is that skills that induce <b>diverse interactions</b> between state factors are often more valuable for solving downstream tasks. To this end, Skild develops a novel skill learning objective that explicitly encourages the mastering of skills that effectively induce different interactions within an environment. We evaluate Skild in several domains with challenging, long-horizon sparse reward tasks including a realistic simulated household robot domain, where Skild successfully learns skills with clear semantic meaning and shows superior performance compared to existing unsupervised reinforcement learning methods that only maximize state coverage.
Abstract:In order to train agents that can quickly adapt to new objectives or reward functions, efficient unsupervised representation learning in sequential decision-making environments can be important. Frameworks such as the Exogenous Block Markov Decision Process (Ex-BMDP) have been proposed to formalize this representation-learning problem (Efroni et al., 2022b). In the Ex-BMDP framework, the agent's high-dimensional observations of the environment have two latent factors: a controllable factor, which evolves deterministically within a small state space according to the agent's actions, and an exogenous factor, which represents time-correlated noise, and can be highly complex. The goal of the representation learning problem is to learn an encoder that maps from observations into the controllable latent space, as well as the dynamics of this space. Efroni et al. (2022b) has shown that this is possible with a sample complexity that depends only on the size of the controllable latent space, and not on the size of the noise factor. However, this prior work has focused on the episodic setting, where the controllable latent state resets to a specific start state after a finite horizon. By contrast, if the agent can only interact with the environment in a single continuous trajectory, prior works have not established sample-complexity bounds. We propose STEEL, the first provably sample-efficient algorithm for learning the controllable dynamics of an Ex-BMDP from a single trajectory, in the function approximation setting. STEEL has a sample complexity that depends only on the sizes of the controllable latent space and the encoder function class, and (at worst linearly) on the mixing time of the exogenous noise factor. We prove that STEEL is correct and sample-efficient, and demonstrate STEEL on two toy problems. Code is available at: https://github.com/midi-lab/steel.
Abstract:Transfer learning in reinforcement learning (RL) has become a pivotal strategy for improving data efficiency in new, unseen tasks by utilizing knowledge from previously learned tasks. This approach is especially beneficial in real-world deployment scenarios where computational resources are constrained and agents must adapt rapidly to novel environments. However, current state-of-the-art methods often fall short in ensuring safety during the transfer process, particularly when unforeseen risks emerge in the deployment phase. In this work, we address these limitations by introducing a novel Caution-Aware Transfer Learning (CAT) framework. Unlike traditional approaches that limit risk considerations to mean-variance, we define "caution" as a more generalized and comprehensive notion of risk. Our core innovation lies in optimizing a weighted sum of reward return and caution-based on state-action occupancy measures-during the transfer process, allowing for a rich representation of diverse risk factors. To the best of our knowledge, this is the first work to explore the optimization of such a generalized risk notion within the context of transfer RL. Our contributions are threefold: (1) We propose a Caution-Aware Transfer (CAT) framework that evaluates source policies within the test environment and constructs a new policy that balances reward maximization and caution. (2) We derive theoretical sub-optimality bounds for our method, providing rigorous guarantees of its efficacy. (3) We empirically validate CAT, demonstrating that it consistently outperforms existing methods by delivering safer policies under varying risk conditions in the test tasks.