Abstract:Parkinson's disease (PD) is a progressive neurological disorder that impacts the quality of life significantly, making in-home monitoring of motor symptoms such as Freezing of Gait (FoG) critical. However, existing symptom monitoring technologies are power-hungry, rely on extensive amounts of labeled data, and operate in controlled settings. These shortcomings limit real-world deployment of the technology. This work presents LIFT-PD, a computationally-efficient self-supervised learning framework for real-time FoG detection. Our method combines self-supervised pre-training on unlabeled data with a novel differential hopping windowing technique to learn from limited labeled instances. An opportunistic model activation module further minimizes power consumption by selectively activating the deep learning module only during active periods. Extensive experimental results show that LIFT-PD achieves a 7.25% increase in precision and 4.4% improvement in accuracy compared to supervised models while using as low as 40% of the labeled training data used for supervised learning. Additionally, the model activation module reduces inference time by up to 67% compared to continuous inference. LIFT-PD paves the way for practical, energy-efficient, and unobtrusive in-home monitoring of PD patients with minimal labeling requirements.
Abstract:Early detection of intrapartum risk enables interventions to potentially prevent or mitigate adverse labor outcomes such as cerebral palsy. Currently, there is no accurate automated system to predict such events to assist with clinical decision-making. To fill this gap, we propose "Artificial Intelligence (AI) for Modeling and Explaining Neonatal Health" (AIMEN), a deep learning framework that not only predicts adverse labor outcomes from maternal, fetal, obstetrical, and intrapartum risk factors but also provides the model's reasoning behind the predictions made. The latter can provide insights into what modifications in the input variables of the model could have changed the predicted outcome. We address the challenges of imbalance and small datasets by synthesizing additional training data using Adaptive Synthetic Sampling (ADASYN) and Conditional Tabular Generative Adversarial Networks (CTGAN). AIMEN uses an ensemble of fully-connected neural networks as the backbone for its classification with the data augmentation supported by either ADASYN or CTGAN. AIMEN, supported by CTGAN, outperforms AIMEN supported by ADASYN in classification. AIMEN can predict a high risk for adverse labor outcomes with an average F1 score of 0.784. It also provides counterfactual explanations that can be achieved by changing 2 to 3 attributes on average. Resources available: https://github.com/ab9mamun/AIMEN.
Abstract:Objective: This research aims to develop a lifestyle intervention system, called MoveSense, that forecasts a patient's activity behavior to allow for early and personalized interventions in real-world clinical environments. Methods: We conducted two clinical studies involving 58 prediabetic veterans and 60 patients with obstructive sleep apnea to gather multimodal behavioral data using wearable devices. We develop multimodal long short-term memory (LSTM) network models, which are capable of forecasting the number of step counts of a patient up to 24 hours in advance by examining data from activity and engagement modalities. Furthermore, we design goal-based forecasting models to predict whether a person's next-day steps will be over a certain threshold. Results: Multimodal LSTM with early fusion achieves 33% and 37% lower mean absolute errors than linear regression and ARIMA respectively on the prediabetes dataset. LSTM also outperforms linear regression and ARIMA with a margin of 13% and 32% on the sleep dataset. Multimodal forecasting models also perform with 72% and 79% accuracy on the prediabetes dataset and sleep dataset respectively on goal-based forecasting. Conclusion: Our experiments conclude that multimodal LSTM models with early fusion are better than multimodal LSTM with late fusion and unimodal LSTM models and also than ARIMA and linear regression models. Significance: We address an important and challenging task of time-series forecasting in uncontrolled environments. Effective forecasting of a person's physical activity can aid in designing adaptive behavioral interventions to keep the user engaged and adherent to a prescribed routine.
Abstract:Wearable sensor systems have demonstrated a great potential for real-time, objective monitoring of physiological health to support behavioral interventions. However, obtaining accurate labels in free-living environments remains difficult due to limited human supervision and the reliance on self-labeling by patients, making data collection and supervised learning particularly challenging. To address this issue, we introduce CUDLE (Cannabis Use Detection with Label Efficiency), a novel framework that leverages self-supervised learning with real-world wearable sensor data to tackle a pressing healthcare challenge: the automatic detection of cannabis consumption in free-living environments. CUDLE identifies cannabis consumption moments using sensor-derived data through a contrastive learning framework. It first learns robust representations via a self-supervised pretext task with data augmentation. These representations are then fine-tuned in a downstream task with a shallow classifier, enabling CUDLE to outperform traditional supervised methods, especially with limited labeled data. To evaluate our approach, we conducted a clinical study with 20 cannabis users, collecting over 500 hours of wearable sensor data alongside user-reported cannabis use moments through EMA (Ecological Momentary Assessment) methods. Our extensive analysis using the collected data shows that CUDLE achieves a higher accuracy of 73.4%, compared to 71.1% for the supervised approach, with the performance gap widening as the number of labels decreases. Notably, CUDLE not only surpasses the supervised model while using 75% less labels, but also reaches peak performance with far fewer subjects.
Abstract:Maintaining normal blood glucose levels through lifestyle behaviors is central to maintaining health and preventing disease. Frequent exposure to dysglycemia (i.e., abnormal glucose events such as hyperlycemia and hypoglycemia) leads to chronic complications including diabetes, kidney disease and need for dialysis, myocardial infarction, stroke, amputation, and death. Therefore, a tool capable of predicting dysglycemia and offering users actionable feedback about how to make changes in their diet, exercise, and medication to prevent abnormal glycemic events could have significant societal impacts. Counterfactual explanations can provide insights into why a model made a particular prediction by generating hypothetical instances that are similar to the original input but lead to a different prediction outcome. Therefore, counterfactuals can be viewed as a means to design AI-driven health interventions to prevent adverse health outcomes such as dysglycemia. In this paper, we design GlyCoach, a framework for generating counterfactual explanations for glucose control. Leveraging insights from adversarial learning, GlyCoach characterizes the decision boundary for high-dimensional health data and performs a grid search to generate actionable interventions. GlyCoach is unique in integrating prior knowledge about user preferences of plausible explanations into the process of counterfactual generation. We evaluate GlyCoach extensively using two real-world datasets and external simulators from prior studies that predict glucose response. GlyCoach achieves 87\% sensitivity in the simulation-aided validation, surpassing the state-of-the-art techniques for generating counterfactual explanations by at least $10\%$. Besides, counterfactuals from GlyCoach exhibit a $32\%$ improved normalized distance compared to previous research.
Abstract:Medications often impose temporal constraints on everyday patient activity. Violations of such medical temporal constraints (MTCs) lead to a lack of treatment adherence, in addition to poor health outcomes and increased healthcare expenses. These MTCs are found in drug usage guidelines (DUGs) in both patient education materials and clinical texts. Computationally representing MTCs in DUGs will advance patient-centric healthcare applications by helping to define safe patient activity patterns. We define a novel taxonomy of MTCs found in DUGs and develop a novel context-free grammar (CFG) based model to computationally represent MTCs from unstructured DUGs. Additionally, we release three new datasets with a combined total of N = 836 DUGs labeled with normalized MTCs. We develop an in-context learning (ICL) solution for automatically extracting and normalizing MTCs found in DUGs, achieving an average F1 score of 0.62 across all datasets. Finally, we rigorously investigate ICL model performance against a baseline model, across datasets and MTC types, and through in-depth error analysis.
Abstract:Prescription medications often impose temporal constraints on regular health behaviors (RHBs) of patients, e.g., eating before taking medication. Violations of such medical temporal constraints (MTCs) can result in adverse effects. Detecting and predicting such violations before they occur can help alert the patient. We formulate the problem of modeling MTCs and develop a proof-of-concept solution, ActSafe, to predict violations of MTCs well ahead of time. ActSafe utilizes a context-free grammar based approach for extracting and mapping MTCs from patient education materials. It also addresses the challenges of accurately predicting RHBs central to MTCs (e.g., medication intake). Our novel behavior prediction model, HERBERT , utilizes a basis vectorization of time series that is generalizable across temporal scale and duration of behaviors, explicitly capturing the dependency between temporally collocated behaviors. Based on evaluation using a real-world RHB dataset collected from 28 patients in uncontrolled environments, HERBERT outperforms baseline models with an average of 51% reduction in root mean square error. Based on an evaluation involving patients with chronic conditions, ActSafe can predict MTC violations a day ahead of time with an average F1 score of 0.86.
Abstract:Stress detection and monitoring is an active area of research with important implications for the personal, professional, and social health of an individual. Current approaches for affective state classification use traditional machine learning algorithms with features computed from multiple sensor modalities. These methods are data-intensive and rely on hand-crafted features which impede the practical applicability of these sensor systems in daily lives. To overcome these shortcomings, we propose a novel Convolutional Neural Network (CNN) based stress detection and classification framework without any feature computation using data from only one sensor modality. Our method is competitive and outperforms current state-of-the-art techniques and achieves a classification accuracy of $92.85\%$ and an $f1$ score of $0.89$. Through our leave-one-subject-out analysis, we also show the importance of personalizing stress models.
Abstract:Inter-beat interval (IBI) measurement enables estimation of heart-rate variability (HRV) which, in turns, can provide early indication of potential cardiovascular diseases. However, extracting IBIs from noisy signals is challenging since the morphology of the signal is distorted in the presence of the noise. Electrocardiogram (ECG) of a person in heavy motion is highly corrupted with noise, known as motion-artifact, and IBI extracted from it is inaccurate. As a part of remote health monitoring and wearable system development, denoising ECG signals and estimating IBIs correctly from them have become an emerging topic among signal-processing researchers. Apart from conventional methods, deep-learning techniques have been successfully used in signal denoising recently, and diagnosis process has become easier, leading to accuracy levels that were previously unachievable. We propose a deep-learning approach leveraging tiramisu autoencoder model to suppress motion-artifact noise and make the R-peaks of the ECG signal prominent even in the presence of high-intensity motion. After denoising, IBIs are estimated more accurately expediting diagnosis tasks. Results illustrate that our method enables IBI estimation from noisy ECG signals with SNR up to -30dB with average root mean square error (RMSE) of 13 milliseconds for estimated IBIs. At this noise level, our error percentage remains below 8% and outperforms other state of the art techniques.
Abstract:This paper takes initial strides at designing and evaluating a vision-based system for privacy ensured activity monitoring. The proposed technology utilizing Artificial Intelligence (AI)-empowered proactive systems offering continuous monitoring, behavioral analysis, and modeling of human activities. To this end, this paper presents Single Run Action Detector (S-RAD) which is a real-time privacy-preserving action detector that performs end-to-end action localization and classification. It is based on Faster-RCNN combined with temporal shift modeling and segment based sampling to capture the human actions. Results on UCF-Sports and UR Fall dataset present comparable accuracy to State-of-the-Art approaches with significantly lower model size and computation demand and the ability for real-time execution on edge embedded device (e.g. Nvidia Jetson Xavier).