Molecular Property Prediction


Molecular property prediction is the process of predicting the properties of molecules using machine-learning models.

TRIDENT: Tri-Modal Molecular Representation Learning with Taxonomic Annotations and Local Correspondence

Add code
Jun 26, 2025
Viaarxiv icon

Robust Molecular Property Prediction via Densifying Scarce Labeled Data

Add code
Jun 13, 2025
Viaarxiv icon

GeoRecon: Graph-Level Representation Learning for 3D Molecules via Reconstruction-Based Pretraining

Add code
Jun 16, 2025
Viaarxiv icon

KEPLA: A Knowledge-Enhanced Deep Learning Framework for Accurate Protein-Ligand Binding Affinity Prediction

Add code
Jun 16, 2025
Viaarxiv icon

CheMixHub: Datasets and Benchmarks for Chemical Mixture Property Prediction

Add code
Jun 13, 2025
Viaarxiv icon

Breaking Bad Molecules: Are MLLMs Ready for Structure-Level Molecular Detoxification?

Add code
Jun 12, 2025
Viaarxiv icon

BioLangFusion: Multimodal Fusion of DNA, mRNA, and Protein Language Models

Add code
Jun 10, 2025
Viaarxiv icon

The Catechol Benchmark: Time-series Solvent Selection Data for Few-shot Machine Learning

Add code
Jun 09, 2025
Viaarxiv icon

Graph Neural Networks in Modern AI-aided Drug Discovery

Add code
Jun 07, 2025
Viaarxiv icon

Unlocking Chemical Insights: Superior Molecular Representations from Intermediate Encoder Layers

Add code
Jun 06, 2025
Viaarxiv icon