Molecular property prediction is the process of predicting the properties of molecules using machine-learning models.
A molecule's properties are fundamentally determined by its composition and structure encoded in its molecular graph. Thus, reasoning about molecular properties requires the ability to parse and understand the molecular graph. Large Language Models (LLMs) are increasingly applied to chemistry, tackling tasks such as molecular name conversion, captioning, text-guided generation, and property or reaction prediction. Most existing benchmarks emphasize general chemical knowledge, rely on literature or surrogate labels that risk leakage or bias, or reduce evaluation to multiple-choice questions. We introduce MolecularIQ, a molecular structure reasoning benchmark focused exclusively on symbolically verifiable tasks. MolecularIQ enables fine-grained evaluation of reasoning over molecular graphs and reveals capability patterns that localize model failures to specific tasks and molecular structures. This provides actionable insights into the strengths and limitations of current chemistry LLMs and guides the development of models that reason faithfully over molecular structure.
Many molecular properties depend on 3D geometry, where non-covalent interactions, stereochemical effects, and medium- to long-range forces are determined by spatial distances and angles that cannot be uniquely captured by a 2D bond graph. Yet most 3D molecular graph neural networks still rely on globally fixed neighborhood heuristics, typically defined by distance cutoffs and maximum neighbor limits, to define local message-passing neighborhoods, leading to rigid, data-agnostic interaction budgets. We propose Multiscale Interaction Mixture of Experts (MI-MoE) to adapt interaction modeling across geometric regimes. Our contributions are threefold: (1) we introduce a distance-cutoff expert ensemble that explicitly captures short-, mid-, and long-range interactions without committing to a single cutoff; (2) we design a topological gating encoder that routes inputs to experts using filtration-based descriptors, including persistent homology features, summarizing how connectivity evolves across radii; and (3) we show that MI-MoE is a plug-in module that consistently improves multiple strong 3D molecular backbones across diverse molecular and polymer property prediction benchmark datasets, covering both regression and classification tasks. These results highlight topology-aware multiscale routing as an effective principle for 3D molecular graph learning.
Designing fluorescent small molecules with tailored optical and physicochemical properties requires navigating vast, underexplored chemical space while satisfying multiple objectives and constraints. Conventional generate-score-screen approaches become impractical under such realistic design specifications, owing to their low search efficiency, unreliable generalizability of machine-learning prediction, and the prohibitive cost of quantum chemical calculation. Here we present LUMOS, a data-and-physics driven framework for inverse design of fluorescent molecules. LUMOS couples generator and predictor within a shared latent representation, enabling direct specification-to-molecule design and efficient exploration. Moreover, LUMOS combines neural networks with a fast time-dependent density functional theory (TD-DFT) calculation workflow to build a suite of complementary predictors spanning different trade-offs in speed, accuracy, and generalizability, enabling reliable property prediction across diverse scenarios. Finally, LUMOS employs a property-guided diffusion model integrated with multi-objective evolutionary algorithms, enabling de novo design and molecular optimization under multiple objectives and constraints. Across comprehensive benchmarks, LUMOS consistently outperforms baseline models in terms of accuracy, generalizability and physical plausibility for fluorescence property prediction, and demonstrates superior performance in multi-objective scaffold- and fragment-level molecular optimization. Further validation using TD-DFT and molecular dynamics (MD) simulations demonstrates that LUMOS can generate valid fluorophores that meet various target specifications. Overall, these results establish LUMOS as a data-physics dual-driven framework for general fluorophore inverse design.
Molecular property prediction is becoming one of the major applications of graph learning in Web-based services, e.g., online protein structure prediction and drug discovery. A key challenge arises in few-shot scenarios, where only a few labeled molecules are available for predicting unseen properties. Recently, several studies have used in-context learning to capture relationships among molecules and properties, but they face two limitations in: (1) exploiting prior knowledge of functional groups that are causally linked to properties and (2) identifying key substructures directly correlated with properties. We propose CaMol, a context-aware graph causality inference framework, to address these challenges by using a causal inference perspective, assuming that each molecule consists of a latent causal structure that determines a specific property. First, we introduce a context graph that encodes chemical knowledge by linking functional groups, molecules, and properties to guide the discovery of causal substructures. Second, we propose a learnable atom masking strategy to disentangle causal substructures from confounding ones. Third, we introduce a distribution intervener that applies backdoor adjustment by combining causal substructures with chemically grounded confounders, disentangling causal effects from real-world chemical variations. Experiments on diverse molecular datasets showed that CaMol achieved superior accuracy and sample efficiency in few-shot tasks, showing its generalizability to unseen properties. Also, the discovered causal substructures were strongly aligned with chemical knowledge about functional groups, supporting the model interpretability.
Large language models (LLMs) have demonstrated their instruction-following capabilities and achieved powerful performance on various tasks. Inspired by their success, recent works in the molecular domain have led to the development of large molecular language models (LMLMs) that integrate 1D molecular strings or 2D molecular graphs into the language models. However, existing LMLMs often suffer from hallucination and limited robustness, largely due to inadequate integration of diverse molecular modalities such as 1D sequences, 2D molecular graphs, and 3D conformations. To address these limitations, we propose CoLLaMo, a large language model-based molecular assistant equipped with a multi-level molecular modality-collaborative projector. The relation-aware modality-collaborative attention mechanism in the projector facilitates fine-grained and relation-guided information exchange between atoms by incorporating 2D structural and 3D spatial relations. Furthermore, we present a molecule-centric new automatic measurement, including a hallucination assessment metric and GPT-based caption quality evaluation to address the limitations of token-based generic evaluation metrics (i.e., BLEU) widely used in assessing molecular comprehension of LMLMs. Our extensive experiments demonstrate that our CoLLaMo enhances the molecular modality generalization capabilities of LMLMs, achieving the best performance on multiple tasks, including molecule captioning, computed property QA, descriptive property QA, motif counting, and IUPAC name prediction.
Scientific Artificial Intelligence (AI) applications require models that deliver trustworthy uncertainty estimates while respecting domain constraints. Existing uncertainty quantification methods lack mechanisms to incorporate symbolic scientific knowledge, while neurosymbolic approaches operate deterministically without principled uncertainty modeling. We introduce the Constraint-Aware Neurosymbolic Uncertainty Framework (CANUF), unifying Bayesian deep learning with differentiable symbolic reasoning. The architecture comprises three components: automated constraint extraction from scientific literature, probabilistic neural backbone with variational inference, and differentiable constraint satisfaction layer ensuring physical consistency. Experiments on Materials Project (140,000+ materials), QM9 molecular properties, and climate benchmarks show CANUF reduces Expected Calibration Error by 34.7% versus Bayesian neural networks while maintaining 99.2% constraint satisfaction. Ablations reveal constraint-guided recalibration contributes 18.3% performance gain, with constraint extraction achieving 91.4% precision. CANUF provides the first end-to-end differentiable pipeline simultaneously addressing uncertainty quantification, constraint satisfaction, and interpretable explanations for scientific predictions.
Developing new fluorophores for advanced imaging techniques requires exploring new chemical space. While generative AI approaches have shown promise in designing novel dye scaffolds, prior efforts often produced synthetically intractable candidates due to a lack of reaction constraints. Here, we developed SyntheFluor-RL, a generative AI model that employs known reaction libraries and molecular building blocks to create readily synthesizable fluorescent molecule scaffolds via reinforcement learning. To guide the generation of fluorophores, SyntheFluor-RL employs a scoring function built on multiple graph neural networks (GNNs) that predict key photophysical properties, including photoluminescence quantum yield, absorption, and emission wavelengths. These outputs are dynamically weighted and combined with a computed pi-conjugation score to prioritize candidates with desirable optical characteristics and synthetic feasibility. SyntheFluor-RL generated 11,590 candidate molecules, which were filtered to 19 structures predicted to possess dye-like properties. Of the 19 molecules, 14 were synthesized and 13 were experimentally confirmed. The top three were characterized, with the lead compound featuring a benzothiadiazole chromophore and exhibiting strong fluorescence (PLQY = 0.62), a large Stokes shift (97 nm), and a long excited-state lifetime (11.5 ns). These results demonstrate the effectiveness of SyntheFluor-RL in the identification of synthetically accessible fluorophores for further development.
Machine learning (ML) enables accurate and fast molecular property predictions, which are of interest in drug discovery and material design. Their success is based on the principle of similarity at its heart, assuming that similar molecules exhibit close properties. However, activity cliffs challenge this principle, and their presence leads to a sharp decline in the performance of existing ML algorithms, particularly graph-based methods. To overcome this obstacle under a low-data scenario, we propose a novel semi-supervised learning (SSL) method dubbed SemiMol, which employs predictions on numerous unannotated data as pseudo-signals for subsequent training. Specifically, we introduce an additional instructor model to evaluate the accuracy and trustworthiness of proxy labels because existing pseudo-labeling approaches require probabilistic outputs to reveal the model's confidence and fail to be applied in regression tasks. Moreover, we design a self-adaptive curriculum learning algorithm to progressively move the target model toward hard samples at a controllable pace. Extensive experiments on 30 activity cliff datasets demonstrate that SemiMol significantly enhances graph-based ML architectures and outpasses state-of-the-art pretraining and SSL baselines.
We present Connection-Aware Motif Sequencing (CamS), a graph-to-sequence representation that enables decoder-only Transformers to learn molecular graphs via standard next-token prediction (NTP). For molecular property prediction, SMILES-based NTP scales well but lacks explicit topology, whereas graph-native masked modeling captures connectivity but risks disrupting the pivotal chemical details (e.g., activity cliffs). CamS bridges this gap by serializing molecular graphs into structure-rich causal sequences. CamS first mines data-driven connection-aware motifs. It then serializes motifs via scaffold-rooted breadth-first search (BFS) to establish a stable core-to-periphery order. Crucially, CamS enables hierarchical modeling by concatenating sequences from fine to coarse motif scales, allowing the model to condition global scaffolds on dense, uncorrupted local structural evidence. We instantiate CamS-LLaMA by pre-training a vanilla LLaMA backbone on CamS sequences. It achieves state-of-the-art performance on MoleculeNet and the activity-cliff benchmark MoleculeACE, outperforming both SMILES-based language models and strong graph baselines. Interpretability analysis confirms that our multi-scale causal serialization effectively drives attention toward cliff-determining differences.
Deploying 3D graph neural networks (GNNs) that are equivariant to 3D rotations (the group SO(3)) on edge devices is challenging due to their high computational cost. This paper addresses the problem by compressing and accelerating an SO(3)-equivariant GNN using low-bit quantization techniques. Specifically, we introduce three innovations for quantized equivariant transformers: (1) a magnitude-direction decoupled quantization scheme that separately quantizes the norm and orientation of equivariant (vector) features, (2) a branch-separated quantization-aware training strategy that treats invariant and equivariant feature channels differently in an attention-based $SO(3)$-GNN, and (3) a robustness-enhancing attention normalization mechanism that stabilizes low-precision attention computations. Experiments on the QM9 and rMD17 molecular benchmarks demonstrate that our 8-bit models achieve accuracy on energy and force predictions comparable to full-precision baselines with markedly improved efficiency. We also conduct ablation studies to quantify the contribution of each component to maintain accuracy and equivariance under quantization, using the Local error of equivariance (LEE) metric. The proposed techniques enable the deployment of symmetry-aware GNNs in practical chemistry applications with 2.37--2.73x faster inference and 4x smaller model size, without sacrificing accuracy or physical symmetry.