Molecular Property Prediction


Molecular property prediction is the process of predicting the properties of molecules using machine-learning models.

Molecular Graph Contrastive Learning with Line Graph

Add code
Jan 15, 2025
Viaarxiv icon

GRAPPA -- A Hybrid Graph Neural Network for Predicting Pure Component Vapor Pressures

Add code
Jan 15, 2025
Viaarxiv icon

Dual-Modality Representation Learning for Molecular Property Prediction

Add code
Jan 11, 2025
Viaarxiv icon

GDiffRetro: Retrosynthesis Prediction with Dual Graph Enhanced Molecular Representation and Diffusion Generation

Add code
Jan 14, 2025
Viaarxiv icon

D3MES: Diffusion Transformer with multihead equivariant self-attention for 3D molecule generation

Add code
Jan 13, 2025
Viaarxiv icon

Revisiting Graph Neural Networks on Graph-level Tasks: Comprehensive Experiments, Analysis, and Improvements

Add code
Jan 01, 2025
Viaarxiv icon

Graph Generative Pre-trained Transformer

Add code
Jan 02, 2025
Viaarxiv icon

FastCHGNet: Training one Universal Interatomic Potential to 1.5 Hours with 32 GPUs

Add code
Dec 30, 2024
Viaarxiv icon

Property Enhanced Instruction Tuning for Multi-task Molecule Generation with Large Language Models

Add code
Dec 24, 2024
Viaarxiv icon

MOL-Mamba: Enhancing Molecular Representation with Structural & Electronic Insights

Add code
Dec 21, 2024
Viaarxiv icon