Topic:Molecular Property Prediction
What is Molecular Property Prediction? Molecular property prediction is the process of predicting the properties of molecules using machine-learning models.
Papers and Code
Apr 23, 2025
Abstract:Modeling the joint distribution of the data samples and their properties allows to construct a single model for both data generation and property prediction, with synergistic capabilities reaching beyond purely generative or predictive models. However, training joint models presents daunting architectural and optimization challenges. Here, we propose Hyformer, a transformer-based joint model that successfully blends the generative and predictive functionalities, using an alternating attention mask together with a unified pre-training scheme. We show that Hyformer rivals other joint models, as well as state-of-the-art molecule generation and property prediction models. Additionally, we show the benefits of joint modeling in downstream tasks of molecular representation learning, hit identification and antimicrobial peptide design.
* 17 pages, 4 figures
Via

Apr 17, 2025
Abstract:Machine-learned potentials (MLPs) have revolutionized materials discovery by providing accurate and efficient predictions of molecular and material properties. Graph Neural Networks (GNNs) have emerged as a state-of-the-art approach due to their ability to capture complex atomic interactions. However, GNNs often produce unreliable predictions when encountering out-of-domain data and it is difficult to identify when that happens. To address this challenge, we explore Uncertainty Quantification (UQ) techniques, focusing on Direct Propagation of Shallow Ensembles (DPOSE) as a computationally efficient alternative to deep ensembles. By integrating DPOSE into the SchNet model, we assess its ability to provide reliable uncertainty estimates across diverse Density Functional Theory datasets, including QM9, OC20, and Gold Molecular Dynamics. Our findings often demonstrate that DPOSE successfully distinguishes between in-domain and out-of-domain samples, exhibiting higher uncertainty for unobserved molecule and material classes. This work highlights the potential of lightweight UQ methods in improving the robustness of GNN-based materials modeling and lays the foundation for future integration with active learning strategies.
Via

Apr 16, 2025
Abstract:In the present work, a generative deep learning framework combining a Co-optimized Variational Autoencoder (Co-VAE) architecture with quantitative structure-property relationship (QSPR) techniques is developed to enable accelerated inverse design of fuels. The Co-VAE integrates a property prediction component coupled with the VAE latent space, enhancing molecular reconstruction and accurate estimation of Research Octane Number (RON) (chosen as the fuel property of interest). A subset of the GDB-13 database, enriched with a curated RON database, is used for model training. Hyperparameter tuning is further utilized to optimize the balance among reconstruction fidelity, chemical validity, and RON prediction. An independent regression model is then used to refine RON prediction, while a differential evolution algorithm is employed to efficiently navigate the VAE latent space and identify promising fuel molecule candidates with high RON. This methodology addresses the limitations of traditional fuel screening approaches by capturing complex structure-property relationships within a comprehensive latent representation. The generative model provides a flexible tool for systematically exploring vast chemical spaces, paving the way for discovering fuels with superior anti-knock properties. The demonstrated approach can be readily extended to incorporate additional fuel properties and synthesizability criteria to enhance applicability and reliability for de novo design of new fuels.
Via

Apr 08, 2025
Abstract:Molecular property prediction is essential for applications such as drug discovery and toxicity assessment. While Graph Neural Networks (GNNs) have shown promising results by modeling molecules as molecular graphs, their reliance on data-driven learning limits their ability to generalize, particularly in the presence of data imbalance and diverse molecular substructures. Existing methods often overlook the varying contributions of different substructures to molecular properties, treating them uniformly. To address these challenges, we propose ASE-Mol, a novel GNN-based framework that leverages a Mixture-of-Experts (MoE) approach for molecular property prediction. ASE-Mol incorporates BRICS decomposition and significant substructure awareness to dynamically identify positive and negative substructures. By integrating a MoE architecture, it reduces the adverse impact of negative motifs while improving adaptability to positive motifs. Experimental results on eight benchmark datasets demonstrate that ASE-Mol achieves state-of-the-art performance, with significant improvements in both accuracy and interpretability.
Via

Apr 09, 2025
Abstract:Data-driven approaches such as deep learning can result in predictive models for material properties with exceptional accuracy and efficiency. However, in many problems data is sparse, severely limiting their accuracy and applicability. To improve predictions, techniques such as transfer learning and multi-task learning have been used. The performance of multi-task learning models depends on the strength of the underlying correlations between tasks and the completeness of the dataset. We find that standard multi-task models tend to underperform when trained on sparse datasets with weakly correlated properties. To address this gap, we use data fusion techniques to combine the learned molecular embeddings of various single-task models and trained a multi-task model on this combined embedding. We apply this technique to a widely used benchmark dataset of quantum chemistry data for small molecules as well as a newly compiled sparse dataset of experimental data collected from literature and our own quantum chemistry and thermochemical calculations. The results show that the fused, multi-task models outperform standard multi-task models for sparse datasets and can provide enhanced prediction on data-limited properties compared to single-task models.
Via

Apr 03, 2025
Abstract:Explainable AI (xAI) interventions aim to improve interpretability for complex black-box models, not only to improve user trust but also as a means to extract scientific insights from high-performing predictive systems. In molecular property prediction, counterfactual explanations offer a way to understand predictive behavior by highlighting which minimal perturbations in the input molecular structure cause the greatest deviation in the predicted property. However, such explanations only allow for meaningful scientific insights if they reflect the distribution of the true underlying property -- a feature we define as counterfactual truthfulness. To increase this truthfulness, we propose the integration of uncertainty estimation techniques to filter counterfactual candidates with high predicted uncertainty. Through computational experiments with synthetic and real-world datasets, we demonstrate that traditional uncertainty estimation methods, such as ensembles and mean-variance estimation, can already substantially reduce the average prediction error and increase counterfactual truthfulness, especially for out-of-distribution settings. Our results highlight the importance and potential impact of incorporating uncertainty estimation into explainability methods, especially considering the relatively high effectiveness of low-effort interventions like model ensembles.
* 24 pages, 5 figures, 4 tabels, accepted at the 3rd xAI World
Conference
Via

Apr 04, 2025
Abstract:Riemannian metrics on the position-orientation space M(3) that are roto-translation group SE(3) invariant play a key role in image analysis tasks like enhancement, denoising, and segmentation. These metrics enable roto-translation equivariant algorithms, with the associated Riemannian distance often used in implementation. However, computing the Riemannian distance is costly, which makes it unsuitable in situations where constant recomputation is needed. We propose the mav (minimal angular velocity) distance, defined as the Riemannian length of a geometrically meaningful curve, as a practical alternative. We see an application of the mav distance in geometric deep learning. Namely, neural networks architectures such as PONITA, relies on geometric invariants to create their roto-translation equivariant model. The mav distance offers a trainable invariant, with the parameters that determine the Riemannian metric acting as learnable weights. In this paper we: 1) classify and parametrize all SE(3) invariant metrics on M(3), 2) describes how to efficiently calculate the mav distance, and 3) investigate if including the mav distance within PONITA can positively impact its accuracy in predicting molecular properties.
Via

Apr 08, 2025
Abstract:Therapeutic development is a costly and high-risk endeavor that is often plagued by high failure rates. To address this, we introduce TxGemma, a suite of efficient, generalist large language models (LLMs) capable of therapeutic property prediction as well as interactive reasoning and explainability. Unlike task-specific models, TxGemma synthesizes information from diverse sources, enabling broad application across the therapeutic development pipeline. The suite includes 2B, 9B, and 27B parameter models, fine-tuned from Gemma-2 on a comprehensive dataset of small molecules, proteins, nucleic acids, diseases, and cell lines. Across 66 therapeutic development tasks, TxGemma achieved superior or comparable performance to the state-of-the-art generalist model on 64 (superior on 45), and against state-of-the-art specialist models on 50 (superior on 26). Fine-tuning TxGemma models on therapeutic downstream tasks, such as clinical trial adverse event prediction, requires less training data than fine-tuning base LLMs, making TxGemma suitable for data-limited applications. Beyond these predictive capabilities, TxGemma features conversational models that bridge the gap between general LLMs and specialized property predictors. These allow scientists to interact in natural language, provide mechanistic reasoning for predictions based on molecular structure, and engage in scientific discussions. Building on this, we further introduce Agentic-Tx, a generalist therapeutic agentic system powered by Gemini 2.5 that reasons, acts, manages diverse workflows, and acquires external domain knowledge. Agentic-Tx surpasses prior leading models on the Humanity's Last Exam benchmark (Chemistry & Biology) with 52.3% relative improvement over o3-mini (high) and 26.7% over o3-mini (high) on GPQA (Chemistry) and excels with improvements of 6.3% (ChemBench-Preference) and 2.4% (ChemBench-Mini) over o3-mini (high).
Via

Apr 04, 2025
Abstract:Euclidean E(3) equivariant neural networks that employ scalar fields on position-orientation space M(3) have been effectively applied to tasks such as predicting molecular dynamics and properties. To perform equivariant convolutional-like operations in these architectures one needs Euclidean invariant kernels on M(3) x M(3). In practice, a handcrafted collection of invariants is selected, and this collection is then fed into multilayer perceptrons to parametrize the kernels. We rigorously describe an optimal collection of 4 smooth scalar invariants on the whole of M(3) x M(3). With optimal we mean that the collection is independent and universal, meaning that all invariants are pertinent, and any invariant kernel is a function of them. We evaluate two collections of invariants, one universal and one not, using the PONITA neural network architecture. Our experiments show that using a collection of invariants that is universal positively impacts the accuracy of PONITA significantly.
Via

Apr 09, 2025
Abstract:Large Language Models (LLMs) can encode complex relationships in their latent spaces, yet harnessing them for optimization under uncertainty remains challenging. We address this gap with a novel architecture that reframes LLM finetuning as Gaussian process (GP) marginal likelihood optimization via deep kernel methods. We introduce LLM-based deep kernels, jointly optimized with GPs to preserve the benefits of both - LLMs to provide a rich and flexible input space for Bayesian optimization and - GPs to model this space with predictive uncertainty for more efficient sampling. Applied to Buchwald-Hartwig reaction optimization, our method nearly doubles the discovery rate of high-performing reactions compared to static LLM embeddings (from 24% to 43% coverage of the top 5% reactions in just 50 optimization iterations). We also observe a 14% improvement over domain-specific representations without requiring specialized features. Extensive empirical evaluation across 19 benchmarks - ranging from general chemistry to reaction and molecular property optimization - demonstrates our method's robustness, generality, and consistent improvements across: (1) tasks, (2) LLM architectures (encoder, decoder, encoder-decoder), (3) pretraining domains (chemistry-related or general-purpose) and (4) hyperparameter settings (tuned once on a single dataset). Finally, we explain these improvements: joint LLM-GP optimization through marginal likelihood implicitly performs contrastive learning, aligning representations to produce (1) better-structured embedding spaces, (2) improved uncertainty calibration, and (3) more efficient sampling - without requiring any external loss. This work provides both practical advances in sample-efficient optimization and insights into what makes effective Bayesian optimization.
Via
