What is Drone Navigation? Drone navigation is the process of autonomously controlling drones to navigate and fly in different environments.
Papers and Code
Dec 19, 2024
Abstract:Although Answer Set Programming (ASP) allows constraining neural-symbolic (NeSy) systems, its employment is hindered by the prohibitive costs of computing stable models and the CPU-bound nature of state-of-the-art solvers. To this end, we propose Answer Set Networks (ASN), a NeSy solver. Based on Graph Neural Networks (GNN), ASNs are a scalable approach to ASP-based Deep Probabilistic Logic Programming (DPPL). Specifically, we show how to translate ASPs into ASNs and demonstrate how ASNs can efficiently solve the encoded problem by leveraging GPU's batching and parallelization capabilities. Our experimental evaluations demonstrate that ASNs outperform state-of-the-art CPU-bound NeSy systems on multiple tasks. Simultaneously, we make the following two contributions based on the strengths of ASNs. Namely, we are the first to show the finetuning of Large Language Models (LLM) with DPPLs, employing ASNs to guide the training with logic. Further, we show the "constitutional navigation" of drones, i.e., encoding public aviation laws in an ASN for routing Unmanned Aerial Vehicles in uncertain environments.
* 16 pages, 9 figures
Via
Dec 18, 2024
Abstract:Deep Reinforcement learning has shown to be a powerful tool for developing policies in environments where an optimal solution is unclear. In this paper, we attempt to apply Twin Delayed Deep Deterministic Policy Gradients to train a neural network to act as a velocity controller for a quadcopter. The quadcopter's objective is to quickly fly through a gate while avoiding crashing into the gate. We transfer our trained policy to the real world by deploying it on a quadcopter in a laboratory environment. Finally, we demonstrate that the trained policy is able to navigate the drone to the gate in the real world.
Via
Dec 16, 2024
Abstract:This paper presents a novel approach to improve global localization and mapping in indoor drone navigation by integrating 5G Time of Arrival (ToA) measurements into ORB-SLAM3, a Simultaneous Localization and Mapping (SLAM) system. By incorporating ToA data from 5G base stations, we align the SLAM's local reference frame with a global coordinate system, enabling accurate and consistent global localization. We extend ORB-SLAM3's optimization pipeline to integrate ToA measurements alongside bias estimation, transforming the inherently local estimation into a globally consistent one. This integration effectively resolves scale ambiguity in monocular SLAM systems and enhances robustness, particularly in challenging scenarios where standard SLAM may fail. Our method is evaluated using five real-world indoor datasets collected with RGB-D cameras and inertial measurement units (IMUs), augmented with simulated 5G ToA measurements at 28 GHz and 78 GHz frequencies using MATLAB and QuaDRiGa. We tested four SLAM configurations: RGB-D, RGB-D-Inertial, Monocular, and Monocular-Inertial. The results demonstrate that while local estimation accuracy remains comparable due to the high precision of RGB-D-based ORB-SLAM3 compared to ToA measurements, the inclusion of ToA measurements facilitates robust global positioning. In scenarios where standard mono-inertial ORB-SLAM3 loses tracking, our approach maintains accurate localization throughout the trajectory.
Via
Dec 13, 2024
Abstract:Nano-drones, with their small, lightweight design, are ideal for confined-space rescue missions and inherently safe for human interaction. However, their limited payload restricts the critical sensing needed for ego-velocity estimation and obstacle detection to single-bean laser-based time-of-flight (ToF) and low-resolution optical sensors. Although those sensors have demonstrated good performance, they fail in some complex real-world scenarios, especially when facing transparent or reflective surfaces (ToFs) or when lacking visual features (optical-flow sensors). Taking inspiration from bats, this paper proposes a novel two-way ranging-based method for ego-velocity estimation and obstacle avoidance based on down-and-forward facing ultra-low-power ultrasonic sensors, which improve the performance when the drone faces reflective materials or navigates in complete darkness. Our results demonstrate that our new sensing system achieves a mean square error of 0.019 m/s on ego-velocity estimation and allows exploration for a flight time of 8 minutes while covering 136 m on average in a challenging environment with transparent and reflective obstacles. We also compare ultrasonic and laser-based ToF sensing techniques for obstacle avoidance, as well as optical flow and ultrasonic-based techniques for ego-velocity estimation, denoting how these systems and methods can be complemented to enhance the robustness of nano-drone operations.
* This paper is extending "BatDeck: Advancing Nano-drone Navigation
with Low-power Ultrasound-based Obstacle Avoidance" (SAS 2024), and is
submitted to IEEE Transactions on Instrumentation and Measurements. arXiv
admin note: text overlap with arXiv:2403.16696
Via
Dec 11, 2024
Abstract:Navigating unmanned aerial vehicles in environments where GPS signals are unavailable poses a compelling and intricate challenge. This challenge is further heightened when dealing with Nano Aerial Vehicles (NAVs) due to their compact size, payload restrictions, and computational capabilities. This paper proposes an approach for localization using off-board computing, an off-board monocular camera, and modified open-source algorithms. The proposed method uses three parallel proportional-integral-derivative controllers on the off-board computer to provide velocity corrections via wireless communication, stabilizing the NAV in a custom-controlled environment. Featuring a 3.1cm localization error and a modest setup cost of 50 USD, this approach proves optimal for environments where cost considerations are paramount. It is especially well-suited for applications like teaching drone control in academic institutions, where the specified error margin is deemed acceptable. Various applications are designed to validate the proposed technique, such as landing the NAV on a moving ground vehicle, path planning in a 3D space, and localizing multi-NAVs. The created package is openly available at https://github.com/simmubhangu/eyantra_drone to foster research in this field.
* 26 pages. Submitted to Cyber-Physical Systems journal
Via
Dec 12, 2024
Abstract:This study seeks to automate camera movement control for filming existing subjects into attractive videos, contrasting with the creation of non-existent content by directly generating the pixels. We select drone videos as our test case due to their rich and challenging motion patterns, distinctive viewing angles, and precise controls. Existing AI videography methods struggle with limited appearance diversity in simulation training, high costs of recording expert operations, and difficulties in designing heuristic-based goals to cover all scenarios. To avoid these issues, we propose a scalable method that involves collecting real-world training data to improve diversity, extracting camera trajectories automatically to minimize annotation costs, and training an effective architecture that does not rely on heuristics. Specifically, we collect 99k high-quality trajectories by running 3D reconstruction on online videos, connecting camera poses from consecutive frames to formulate 3D camera paths, and using Kalman filter to identify and remove low-quality data. Moreover, we introduce DVGFormer, an auto-regressive transformer that leverages the camera path and images from all past frames to predict camera movement in the next frame. We evaluate our system across 38 synthetic natural scenes and 7 real city 3D scans. We show that our system effectively learns to perform challenging camera movements such as navigating through obstacles, maintaining low altitude to increase perceived speed, and orbiting towers and buildings, which are very useful for recording high-quality videos. Data and code are available at dvgformer.github.io.
Via
Dec 03, 2024
Abstract:This paper investigates the orientation, position, and linear velocity estimation problem of a rigid-body moving in three-dimensional (3D) space with six degrees-of-freedom (6 DoF). The highly nonlinear navigation kinematics are formulated to ensure global representation of the navigation problem. A computationally efficient Quaternion-based Navigation Unscented Kalman Filter (QNUKF) is proposed on $\mathbb{S}^{3}\times\mathbb{R}^{3}\times\mathbb{R}^{3}$ imitating the true nonlinear navigation kinematics and utilize onboard Visual-Inertial Navigation (VIN) units to achieve successful GPS-denied navigation. The proposed QNUKF is designed in discrete form to operate based on the data fusion of photographs garnered by a vision unit (stereo or monocular camera) and information collected by a low-cost inertial measurement unit (IMU). The photographs are processed to extract feature points in 3D space, while the 6-axis IMU supplies angular velocity and accelerometer measurements expressed with respect to the body-frame. Robustness and effectiveness of the proposed QNUKF have been confirmed through experiments on a real-world dataset collected by a drone navigating in 3D and consisting of stereo images and 6-axis IMU measurements. Also, the proposed approach is validated against standard state-of-the-art filtering techniques. IEEE Keywords: Localization, Navigation, Unmanned Aerial Vehicle, Sensor-fusion, Inertial Measurement Unit, Vision Unit.
* IEEE Transactions on Instrumentation and Measurement
Via
Nov 28, 2024
Abstract:This paper introduces a comprehensive artificial intelligence operating system tailored for low-altitude aviation applications, integrating cutting-edge technologies for enhanced performance, safety, and efficiency. The system comprises six core components: OrinFlight OS, a high-performance operating system optimized for real-time task execution; UnitedVision, a versatile visual processing module supporting advanced image analysis; UnitedSense, a multi-sensor fusion module providing precise environmental modeling; UnitedNavigator, a dynamic path-planning and navigation system; UnitedMatrix, enabling multi-drone coordination and task execution; and UnitedInSight, a ground station for monitoring and management. Complemented by the UA DevKit low-code platform, the system facilitates user-friendly customization and application development. Leveraging NVIDIA Orin's computational power and advanced AI algorithms, this system addresses complex challenges in modern aviation, offering robust solutions for navigation, perception, and collaborative operations. This work highlights the system's architecture, features, and potential applications, demonstrating its ability to meet the demands of intelligent aviation environments.
Via
Nov 18, 2024
Abstract:Autonomous systems, including robots and drones, face significant challenges when navigating through dynamic environments, particularly within urban settings where obstacles, fluctuating traffic, and pedestrian activity are constantly shifting. Although, traditional motion planning algorithms like the wavefront planner and gradient descent planner, which use potential functions, work well in static environments, they fall short in situations where the environment is continuously changing. This work proposes a dynamic, real-time path planning approach specifically designed for autonomous systems, allowing them to effectively avoid static and dynamic obstacles, thereby enhancing their overall adaptability. The approach integrates the efficiency of conventional planners with the ability to make rapid adjustments in response to moving obstacles and environmental changes. The simulation results discussed in this article demonstrate the effectiveness of the proposed method, demonstrating its suitability for robotic path planning in both known and unknown environments, including those involving mobile objects, agents, or potential threats.
* 20 pages
Via
Nov 21, 2024
Abstract:The real-world application of small drones is mostly hampered by energy limitations. Neuromorphic computing promises extremely energy-efficient AI for autonomous flight, but is still challenging to train and deploy on real robots. In order to reap the maximal benefits from neuromorphic computing, it is desired to perform all autonomy functions end-to-end on a single neuromorphic chip, from low-level attitude control to high-level navigation. This research presents the first neuromorphic control system using a spiking neural network (SNN) to effectively map a drone's raw sensory input directly to motor commands. We apply this method to low-level attitude estimation and control for a quadrotor, deploying the SNN on a tiny Crazyflie. We propose a modular SNN, separately training and then merging estimation and control sub-networks. The SNN is trained with imitation learning, using a flight dataset of sensory-motor pairs. Post-training, the network is deployed on the Crazyflie, issuing control commands from sensor inputs at $500$Hz. Furthermore, for the training procedure we augmented training data by flying a controller with additional excitation and time-shifting the target data to enhance the predictive capabilities of the SNN. On the real drone the perception-to-control SNN tracks attitude commands with an average error of $3$ degrees, compared to $2.5$ degrees for the regular flight stack. We also show the benefits of the proposed learning modifications for reducing the average tracking error and reducing oscillations. Our work shows the feasibility of performing neuromorphic end-to-end control, laying the basis for highly energy-efficient and low-latency neuromorphic autopilots.
Via