Deblurring is a computer-vision task that involves removing the blurring artifacts from images or videos to restore the original, sharp content. Blurring can be caused by various factors such as camera shake, fast motion, and out-of-focus objects, and can result in a loss of detail and quality in the captured images. The goal of deblurring is to produce a clear, high-quality image that accurately represents the original scene.
Unsupervised object-centric learning models, particularly slot-based architectures, have shown great promise in decomposing complex scenes. However, their reliance on reconstruction-based training creates a fundamental conflict between the sharp, high-frequency attention maps of the encoder and the spatially consistent but blurry reconstruction maps of the decoder. We identify that this discrepancy gives rise to a vicious cycle: the noisy feature map from the encoder forces the decoder to average over possibilities and produce even blurrier outputs, while the gradient computed from blurry reconstruction maps lacks high-frequency details necessary to supervise encoder features. To break this cycle, we introduce Synergistic Representation Learning (SRL) that establishes a virtuous cycle where the encoder and decoder mutually refine one another. SRL leverages the encoder's sharpness to deblur the semantic boundary within the decoder output, while exploiting the decoder's spatial consistency to denoise the encoder's features. This mutual refinement process is stabilized by a warm-up phase with a slot regularization objective that initially allocates distinct entities per slot. By bridging the representational gap between the encoder and decoder, SRL achieves state-of-the-art results on video object-centric learning benchmarks. Codes are available at https://github.com/hynnsk/SRL.
Diffusion posterior sampling solves inverse problems by combining a pretrained diffusion prior with measurement-consistency guidance, but it often fails to recover fine details because measurement terms are applied in a manner that is weakly coupled to the diffusion noise level. At high noise, data-consistency gradients computed from inaccurate estimates can be geometrically incongruent with the posterior geometry, inducing early-step drift, spurious high-frequency artifacts, plus sensitivity to schedules and ill-conditioned operators. To address these concerns, we propose a noise--frequency Continuation framework that constructs a continuous family of intermediate posteriors whose likelihood enforces measurement consistency only within a noise-dependent frequency band. This principle is instantiated with a stabilized posterior sampler that combines a diffusion predictor, band-limited likelihood guidance, and a multi-resolution consistency strategy that aggressively commits reliable coarse corrections while conservatively adopting high-frequency details only when they become identifiable. Across super-resolution, inpainting, and deblurring, our method achieves state-of-the-art performance and improves motion deblurring PSNR by up to 5 dB over strong baselines.
Flow-based generative models provide strong unconditional priors for inverse problems, but guiding their dynamics for conditional generation remains challenging. Recent work casts training-free conditional generation in flow models as an optimal control problem; however, solving the resulting trajectory optimisation is computationally and memory intensive, requiring differentiation through the flow dynamics or adjoint solves. We propose MPC-Flow, a model predictive control framework that formulates inverse problem solving with flow-based generative models as a sequence of control sub-problems, enabling practical optimal control-based guidance at inference time. We provide theoretical guarantees linking MPC-Flow to the underlying optimal control objective and show how different algorithmic choices yield a spectrum of guidance algorithms, including regimes that avoid backpropagation through the generative model trajectory. We evaluate MPC-Flow on benchmark image restoration tasks, spanning linear and non-linear settings such as in-painting, deblurring, and super-resolution, and demonstrate strong performance and scalability to massive state-of-the-art architectures via training-free guidance of FLUX.2 (32B) in a quantised setting on consumer hardware.
Endoscopic image analysis is vital for colorectal cancer screening, yet real-world conditions often suffer from lens fogging, motion blur, and specular highlights, which severely compromise automated polyp detection. We propose EndoCaver, a lightweight transformer with a unidirectional-guided dual-decoder architecture, enabling joint multi-task capability for image deblurring and segmentation while significantly reducing computational complexity and model parameters. Specifically, it integrates a Global Attention Module (GAM) for cross-scale aggregation, a Deblurring-Segmentation Aligner (DSA) to transfer restoration cues, and a cosine-based scheduler (LoCoS) for stable multi-task optimisation. Experiments on the Kvasir-SEG dataset show that EndoCaver achieves 0.922 Dice on clean data and 0.889 under severe image degradation, surpassing state-of-the-art methods while reducing model parameters by 90%. These results demonstrate its efficiency and robustness, making it well-suited for on-device clinical deployment. Code is available at https://github.com/ReaganWu/EndoCaver.
In this paper we propose the Iterative Amortized Hierarchical Variational Autoencoder (IA-HVAE), which expands on amortized inference with a hybrid scheme containing an initial amortized guess and iterative refinement with decoder gradients. We achieve this by creating a linearly separable decoder in a transform domain (e.g. Fourier space), enabling real-time applications with very high model depths. The architectural change leads to a 35x speed-up for iterative inference with respect to the traditional HVAE. We show that our hybrid approach outperforms fully amortized and fully iterative equivalents in accuracy and speed respectively. Moreover, the IAHVAE shows improved reconstruction quality over a vanilla HVAE in inverse problems such as deblurring and denoising.
Novel view synthesis from low dynamic range (LDR) blurry images, which are common in the wild, struggles to recover high dynamic range (HDR) and sharp 3D representations in extreme lighting conditions. Although existing methods employ event data to address this issue, they ignore the sensor-physics mismatches between the camera output and physical world radiance, resulting in suboptimal HDR and deblurring results. To cope with this problem, we propose a unified sensor-physics grounded NeRF framework for sharp HDR novel view synthesis from single-exposure blurry LDR images and corresponding events. We employ NeRF to directly represent the actual radiance of the 3D scene in the HDR domain and model raw HDR scene rays hitting the sensor pixels as in the physical world. A pixel-wise RGB mapping field is introduced to align the above rendered pixel values with the sensor-recorded LDR pixel values of the input images. A novel event mapping field is also designed to bridge the physical scene dynamics and actual event sensor output. The two mapping fields are jointly optimized with the NeRF network, leveraging the spatial and temporal dynamic information in events to enhance the sharp HDR 3D representation learning. Experiments on the collected and public datasets demonstrate that our method can achieve state-of-the-art deblurring HDR novel view synthesis results with single-exposure blurry LDR images and corresponding events.
Face swapping aims to transfer the identity of a source face onto a target face while preserving target-specific attributes such as pose, expression, lighting, skin tone, and makeup. However, since real ground truth for face swapping is unavailable, achieving both accurate identity transfer and high-quality attribute preservation remains challenging. In addition, recent diffusion-based approaches attempt to improve visual fidelity through conditional inpainting on masked target images, but the masked condition removes crucial appearance cues of target, resulting in plausible yet misaligned attributes. To address these limitations, we propose APPLE (Attribute-Preserving Pseudo-Labeling), a diffusion-based teacher-student framework that enhances attribute fidelity through attribute-aware pseudo-label supervision. We reformulate face swapping as a conditional deblurring task to more faithfully preserve target-specific attributes such as lighting, skin tone, and makeup. In addition, we introduce an attribute-aware inversion scheme to further improve detailed attribute preservation. Through an elaborate attribute-preserving design for teacher learning, APPLE produces high-quality pseudo triplets that explicitly provide the student with direct face-swapping supervision. Overall, APPLE achieves state-of-the-art performance in terms of attribute preservation and identity transfer, producing more photorealistic and target-faithful results.
Terahertz (THz) systems inherently introduce frequency-dependent degradation effects, resulting in low-frequency blurring and high-frequency noise in amplitude images. Conventional image processing techniques cannot simultaneously address both issues, and manual intervention is often required due to the unknown boundary between denoising and deblurring. To tackle this challenge, we propose a principal component analysis (PCA)-based THz self-supervised denoising and deblurring network (THz-SSDD). The network employs a Recorrupted-to-Recorrupted self-supervised learning strategy to capture the intrinsic features of noise by exploiting invariance under repeated corruption. PCA decomposition and reconstruction are then applied to restore images across both low and high frequencies. The performance of the THz-SSDD network was evaluated on four types of samples. Training requires only a small set of unlabeled noisy images, and testing across samples with different material properties and measurement modes demonstrates effective denoising and deblurring. Quantitative analysis further validates the network feasibility, showing improvements in image quality while preserving the physical characteristics of the original signals.
Latent diffusion models such as Stable Diffusion 1.5 offer strong generative priors that are highly valuable for image restoration, yet their full pipelines remain too computationally heavy for deployment on edge devices. Existing lightweight variants predominantly compress the denoising U-Net or reduce the diffusion trajectory, which disrupts the underlying latent manifold and limits generalization beyond a single task. We introduce NanoSD, a family of Pareto-optimal diffusion foundation models distilled from Stable Diffusion 1.5 through network surgery, feature-wise generative distillation, and structured architectural scaling jointly applied to the U-Net and the VAE encoder-decoder. This full-pipeline co-design preserves the generative prior while producing models that occupy distinct operating points along the accuracy-latency-size frontier (e.g., 130M-315M parameters, achieving real-time inference down to 20ms on mobile-class NPUs). We show that parameter reduction alone does not correlate with hardware efficiency, and we provide an analysis revealing how architectural balance, feature routing, and latent-space preservation jointly shape true on-device latency. When used as a drop-in backbone, NanoSD enables state-of-the-art performance across image super-resolution, image deblurring, face restoration, and monocular depth estimation, outperforming prior lightweight diffusion models in both perceptual quality and practical deployability. NanoSD establishes a general-purpose diffusion foundation model family suitable for real-time visual generation and restoration on edge devices.
Image deblurring is a critical stage in mobile image signal processing pipelines, where the ability to restore fine structures and textures must be balanced with real-time constraints on edge devices. While recent deep networks such as transformers and activation-free architectures achieve state-of-the-art (SOTA) accuracy, their efficiency is typically measured in FLOPs or parameters, which do not correlate with latency on embedded hardware. We propose a hardware-aware adaptation framework that restructures existing models through sensitivity-guided block substitution, surrogate distillation, and training-free multi-objective search driven by device profiling. Applied to the 36-block NAFNet baseline, the optimized variants achieve up to 55% reduction in GMACs compared to the recent transformer-based SOTA while maintaining competitive accuracy. Most importantly, on-device deployment yields a 1.25X latency improvement over the baseline. Experiments on motion deblurring (GoPro), defocus deblurring (DPDD), and auxiliary benchmarks (RealBlur-J/R, HIDE) demonstrate the generality of the approach, while comparisons with prior efficient baselines confirm its accuracy-efficiency trade-off. These results establish feedback-driven adaptation as a principled strategy for bridging the gap between algorithmic design and deployment-ready deblurring models.