Abstract:Recent AI-based video editing has enabled users to edit videos through simple text prompts, significantly simplifying the editing process. However, recent zero-shot video editing techniques primarily focus on global or single-object edits, which can lead to unintended changes in other parts of the video. When multiple objects require localized edits, existing methods face challenges, such as unfaithful editing, editing leakage, and lack of suitable evaluation datasets and metrics. To overcome these limitations, we propose a zero-shot $\textbf{M}$ulti-$\textbf{I}$nstance $\textbf{V}$ideo $\textbf{E}$diting framework, called MIVE. MIVE is a general-purpose mask-based framework, not dedicated to specific objects (e.g., people). MIVE introduces two key modules: (i) Disentangled Multi-instance Sampling (DMS) to prevent editing leakage and (ii) Instance-centric Probability Redistribution (IPR) to ensure precise localization and faithful editing. Additionally, we present our new MIVE Dataset featuring diverse video scenarios and introduce the Cross-Instance Accuracy (CIA) Score to evaluate editing leakage in multi-instance video editing tasks. Our extensive qualitative, quantitative, and user study evaluations demonstrate that MIVE significantly outperforms recent state-of-the-art methods in terms of editing faithfulness, accuracy, and leakage prevention, setting a new benchmark for multi-instance video editing. The project page is available at https://kaist-viclab.github.io/mive-site/
Abstract:Existing Video Frame interpolation (VFI) models tend to suffer from time-to-location ambiguity when trained with video of non-uniform motions, such as accelerating, decelerating, and changing directions, which often yield blurred interpolated frames. In this paper, we propose (i) a novel motion description map, Bidirectional Motion field (BiM), to effectively describe non-uniform motions; (ii) a BiM-guided Flow Net (BiMFN) with Content-Aware Upsampling Network (CAUN) for precise optical flow estimation; and (iii) Knowledge Distillation for VFI-centric Flow supervision (KDVCF) to supervise the motion estimation of VFI model with VFI-centric teacher flows. The proposed VFI is called a Bidirectional Motion field-guided VFI (BiM-VFI) model. Extensive experiments show that our BiM-VFI model significantly surpasses the recent state-of-the-art VFI methods by 26% and 45% improvements in LPIPS and STLPIPS respectively, yielding interpolated frames with much fewer blurs at arbitrary time instances.
Abstract:Synthesizing novel views from in-the-wild monocular videos is challenging due to scene dynamics and the lack of multi-view cues. To address this, we propose SplineGS, a COLMAP-free dynamic 3D Gaussian Splatting (3DGS) framework for high-quality reconstruction and fast rendering from monocular videos. At its core is a novel Motion-Adaptive Spline (MAS) method, which represents continuous dynamic 3D Gaussian trajectories using cubic Hermite splines with a small number of control points. For MAS, we introduce a Motion-Adaptive Control points Pruning (MACP) method to model the deformation of each dynamic 3D Gaussian across varying motions, progressively pruning control points while maintaining dynamic modeling integrity. Additionally, we present a joint optimization strategy for camera parameter estimation and 3D Gaussian attributes, leveraging photometric and geometric consistency. This eliminates the need for Structure-from-Motion preprocessing and enhances SplineGS's robustness in real-world conditions. Experiments show that SplineGS significantly outperforms state-of-the-art methods in novel view synthesis quality for dynamic scenes from monocular videos, achieving thousands times faster rendering speed.
Abstract:We present a joint learning scheme of video super-resolution and deblurring, called VSRDB, to restore clean high-resolution (HR) videos from blurry low-resolution (LR) ones. This joint restoration problem has drawn much less attention compared to single restoration problems. In this paper, we propose a novel flow-guided dynamic filtering (FGDF) and iterative feature refinement with multi-attention (FRMA), which constitutes our VSRDB framework, denoted as FMA-Net. Specifically, our proposed FGDF enables precise estimation of both spatio-temporally-variant degradation and restoration kernels that are aware of motion trajectories through sophisticated motion representation learning. Compared to conventional dynamic filtering, the FGDF enables the FMA-Net to effectively handle large motions into the VSRDB. Additionally, the stacked FRMA blocks trained with our novel temporal anchor (TA) loss, which temporally anchors and sharpens features, refine features in a course-to-fine manner through iterative updates. Extensive experiments demonstrate the superiority of the proposed FMA-Net over state-of-the-art methods in terms of both quantitative and qualitative quality. Codes and pre-trained models are available at: https://kaist-viclab.github.io/fmanet-site
Abstract:Video view synthesis, allowing for the creation of visually appealing frames from arbitrary viewpoints and times, offers immersive viewing experiences. Neural radiance fields, particularly NeRF, initially developed for static scenes, have spurred the creation of various methods for video view synthesis. However, the challenge for video view synthesis arises from motion blur, a consequence of object or camera movement during exposure, which hinders the precise synthesis of sharp spatio-temporal views. In response, we propose a novel dynamic deblurring NeRF framework for blurry monocular video, called DyBluRF, consisting of an Interleave Ray Refinement (IRR) stage and a Motion Decomposition-based Deblurring (MDD) stage. Our DyBluRF is the first that addresses and handles the novel view synthesis for blurry monocular video. The IRR stage jointly reconstructs dynamic 3D scenes and refines the inaccurate camera pose information to combat imprecise pose information extracted from the given blurry frames. The MDD stage is a novel incremental latent sharp-rays prediction (ILSP) approach for the blurry monocular video frames by decomposing the latent sharp rays into global camera motion and local object motion components. Extensive experimental results demonstrate that our DyBluRF outperforms qualitatively and quantitatively the very recent state-of-the-art methods. Our project page including source codes and pretrained model are publicly available at https://kaist-viclab.github.io/dyblurf-site/.
Abstract:In this paper, we propose a novel joint deblurring and multi-frame interpolation (DeMFI) framework, called DeMFI-Net, which accurately converts blurry videos of lower-frame-rate to sharp videos at higher-frame-rate based on flow-guided attentive-correlation-based feature bolstering (FAC-FB) module and recursive boosting (RB), in terms of multi-frame interpolation (MFI). The DeMFI-Net jointly performs deblurring and MFI where its baseline version performs feature-flow-based warping with FAC-FB module to obtain a sharp-interpolated frame as well to deblur two center-input frames. Moreover, its extended version further improves the joint task performance based on pixel-flow-based warping with GRU-based RB. Our FAC-FB module effectively gathers the distributed blurry pixel information over blurry input frames in feature-domain to improve the overall joint performances, which is computationally efficient since its attentive correlation is only focused pointwise. As a result, our DeMFI-Net achieves state-of-the-art (SOTA) performances for diverse datasets with significant margins compared to the recent SOTA methods, for both deblurring and MFI. All source codes including pretrained DeMFI-Net are publicly available at https://github.com/JihyongOh/DeMFI.
Abstract:In this paper, we firstly present a dataset (X4K1000FPS) of 4K videos of 1000 fps with the extreme motion to the research community for video frame interpolation (VFI), and propose an extreme VFI network, called XVFI-Net, that first handles the VFI for 4K videos with large motion. The XVFI-Net is based on a recursive multi-scale shared structure that consists of two cascaded modules for bidirectional optical flow learning between two input frames (BiOF-I) and for bidirectional optical flow learning from target to input frames (BiOF-T). The optical flows are stably approximated by a complementary flow reversal (CFR) proposed in BiOF-T module. During inference, the BiOF-I module can start at any scale of input while the BiOF-T module only operates at the original input scale so that the inference can be accelerated while maintaining highly accurate VFI performance. Extensive experimental results show that our XVFI-Net can successfully capture the essential information of objects with extremely large motions and complex textures while the state-of-the-art methods exhibit poor performance. Furthermore, our XVFI-Net framework also performs comparably on the previous lower resolution benchmark dataset, which shows a robustness of our algorithm as well. All source codes, pre-trained models, and proposed X4K1000FPS datasets are publicly available at https://github.com/JihyongOh/XVFI.
Abstract:Although Generative Adversarial Networks (GANs) are successfully applied to diverse fields, training GANs on synthetic aperture radar (SAR) data is a challenging task mostly due to speckle noise. On the one hands, in a learning perspective of human's perception, it is natural to learn a task by using various information from multiple sources. However, in the previous GAN works on SAR target image generation, the information on target classes has only been used. Due to the backscattering characteristics of SAR image signals, the shapes and structures of SAR target images are strongly dependent on their pose angles. Nevertheless, the pose angle information has not been incorporated into such generative models for SAR target images. In this paper, we firstly propose a novel GAN-based multi-task learning (MTL) method for SAR target image generation, called PeaceGAN that uses both pose angle and target class information, which makes it possible to produce SAR target images of desired target classes at intended pose angles. For this, the PeaceGAN has two additional structures, a pose estimator and an auxiliary classifier, at the side of its discriminator to combine the pose and class information more efficiently. In addition, the PeaceGAN is jointly learned in an end-to-end manner as MTL with both pose angle and target class information, thus enhancing the diversity and quality of generated SAR target images The extensive experiments show that taking an advantage of both pose angle and target class learning by the proposed pose estimator and auxiliary classifier can help the PeaceGAN's generator effectively learn the distributions of SAR target images in the MTL framework, so that it can better generate the SAR target images more flexibly and faithfully at intended pose angles for desired target classes compared to the recent state-of-the-art methods.
Abstract:Super-resolution (SR) has been widely used to convert low-resolution legacy videos to high-resolution (HR) ones, to suit the increasing resolution of displays (e.g. UHD TVs). However, it becomes easier for humans to notice motion artifacts (e.g. motion judder) in HR videos being rendered on larger-sized display devices. Thus, broadcasting standards support higher frame rates for UHD (Ultra High Definition) videos (4K@60 fps, 8K@120 fps), meaning that applying SR only is insufficient to produce genuine high quality videos. Hence, to up-convert legacy videos for realistic applications, not only SR but also video frame interpolation (VFI) is necessitated. In this paper, we first propose a joint VFI-SR framework for up-scaling the spatio-temporal resolution of videos from 2K 30 fps to 4K 60 fps. For this, we propose a novel training scheme with a multi-scale temporal loss that imposes temporal regularization on the input video sequence, which can be applied to any general video-related task. The proposed structure is analyzed in depth with extensive experiments.
Abstract:Joint learning of super-resolution (SR) and inverse tone-mapping (ITM) has been explored recently, to convert legacy low resolution (LR) standard dynamic range (SDR) videos to high resolution (HR) high dynamic range (HDR) videos for the growing need of UHD HDR TV/broadcasting applications. However, previous CNN-based methods directly reconstruct the HR HDR frames from LR SDR frames, and are only trained with a simple L2 loss. In this paper, we take a divide-and-conquer approach in designing a novel GAN-based joint SR-ITM network, called JSI-GAN, which is composed of three task-specific subnets: an image reconstruction subnet, a detail restoration (DR) subnet and a local contrast enhancement (LCE) subnet. We delicately design these subnets so that they are appropriately trained for the intended purpose, learning a pair of pixel-wise 1D separable filters via the DR subnet for detail restoration and a pixel-wise 2D local filter by the LCE subnet for contrast enhancement. Moreover, to train the JSI-GAN effectively, we propose a novel detail GAN loss alongside the conventional GAN loss, which helps enhancing both local details and contrasts to reconstruct high quality HR HDR results. When all subnets are jointly trained well, the predicted HR HDR results of higher quality are obtained with at least 0.41 dB gain in PSNR over those generated by the previous methods.