Abstract:3D Gaussian Splatting (3DGS) has made significant strides in scene representation and neural rendering, with intense efforts focused on adapting it for dynamic scenes. Despite delivering remarkable rendering quality and speed, existing methods struggle with storage demands and representing complex real-world motions. To tackle these issues, we propose MoDecGS, a memory-efficient Gaussian splatting framework designed for reconstructing novel views in challenging scenarios with complex motions. We introduce GlobaltoLocal Motion Decomposition (GLMD) to effectively capture dynamic motions in a coarsetofine manner. This approach leverages Global Canonical Scaffolds (Global CS) and Local Canonical Scaffolds (Local CS), extending static Scaffold representation to dynamic video reconstruction. For Global CS, we propose Global Anchor Deformation (GAD) to efficiently represent global dynamics along complex motions, by directly deforming the implicit Scaffold attributes which are anchor position, offset, and local context features. Next, we finely adjust local motions via the Local Gaussian Deformation (LGD) of Local CS explicitly. Additionally, we introduce Temporal Interval Adjustment (TIA) to automatically control the temporal coverage of each Local CS during training, allowing MoDecGS to find optimal interval assignments based on the specified number of temporal segments. Extensive evaluations demonstrate that MoDecGS achieves an average 70% reduction in model size over stateoftheart methods for dynamic 3D Gaussians from realworld dynamic videos while maintaining or even improving rendering quality.
Abstract:Weakly supervised temporal action localization (WTAL) aims to detect action instances in untrimmed videos using only video-level annotations. Since many existing works optimize WTAL models based on action classification labels, they encounter the task discrepancy problem (i.e., localization-by-classification). To tackle this issue, recent studies have attempted to utilize action category names as auxiliary semantic knowledge through vision-language pre-training (VLP). However, there are still areas where existing research falls short. Previous approaches primarily focused on leveraging textual information from language models but overlooked the alignment of dynamic human action and VLP knowledge in a joint space. Furthermore, the deterministic representation employed in previous studies struggles to capture fine-grained human motions. To address these problems, we propose a novel framework that aligns human action knowledge and VLP knowledge in a probabilistic embedding space. Moreover, we propose intra- and inter-distribution contrastive learning to enhance the probabilistic embedding space based on statistical similarities. Extensive experiments and ablation studies reveal that our method significantly outperforms all previous state-of-the-art methods. Code is available at https://github.com/sejong-rcv/PVLR.