Autonomous inspection of underground infrastructure, such as sewer and culvert systems, is critical to public safety and urban sustainability. Although robotic platforms equipped with visual sensors can efficiently detect structural deficiencies, the automated generation of human-readable summaries from these detections remains a significant challenge, especially on resource-constrained edge devices. This paper presents a novel two-stage pipeline for end-to-end summarization of underground deficiencies, combining our lightweight RAPID-SCAN segmentation model with a fine-tuned Vision-Language Model (VLM) deployed on an edge computing platform. The first stage employs RAPID-SCAN (Resource-Aware Pipeline Inspection and Defect Segmentation using Compact Adaptive Network), achieving 0.834 F1-score with only 0.64M parameters for efficient defect segmentation. The second stage utilizes a fine-tuned Phi-3.5 VLM that generates concise, domain-specific summaries in natural language from the segmentation outputs. We introduce a curated dataset of inspection images with manually verified descriptions for VLM fine-tuning and evaluation. To enable real-time performance, we employ post-training quantization with hardware-specific optimization, achieving significant reductions in model size and inference latency without compromising summarization quality. We deploy and evaluate our complete pipeline on a mobile robotic platform, demonstrating its effectiveness in real-world inspection scenarios. Our results show the potential of edge-deployable integrated AI systems to bridge the gap between automated defect detection and actionable insights for infrastructure maintenance, paving the way for more scalable and autonomous inspection solutions.
While passive agents merely follow instructions, proactive agents align with higher-level objectives, such as assistance and safety by continuously monitoring the environment to determine when and how to act. However, developing proactive agents is hindered by the lack of specialized resources. To address this, we introduce ProAct-75, a benchmark designed to train and evaluate proactive agents across diverse domains, including assistance, maintenance, and safety monitoring. Spanning 75 tasks, our dataset features 91,581 step-level annotations enriched with explicit task graphs. These graphs encode step dependencies and parallel execution possibilities, providing the structural grounding necessary for complex decision-making. Building on this benchmark, we propose ProAct-Helper, a reference baseline powered by a Multimodal Large Language Model (MLLM) that grounds decision-making in state detection, and leveraging task graphs to enable entropy-driven heuristic search for action selection, allowing agents to execute parallel threads independently rather than mirroring the human's next step. Extensive experiments demonstrate that ProAct-Helper outperforms strong closed-source models, improving trigger detection mF1 by 6.21%, saving 0.25 more steps in online one-step decision, and increasing the rate of parallel actions by 15.58%.
Downstream fine-tuning of vision-language-action (VLA) models enhances robotics, yet exposes the pipeline to backdoor risks. Attackers can pretrain VLAs on poisoned data to implant backdoors that remain stealthy but can trigger harmful behavior during inference. However, existing defenses either lack mechanistic insight into multimodal backdoors or impose prohibitive computational costs via full-model retraining. To this end, we uncover a deep-layer attention grabbing mechanism: backdoors redirect late-stage attention and form compact embedding clusters near the clean manifold. Leveraging this insight, we introduce Bera, a test-time backdoor erasure framework that detects tokens with anomalous attention via latent-space localization, masks suspicious regions using deep-layer cues, and reconstructs a trigger-free image to break the trigger-unsafe-action mapping while restoring correct behavior. Unlike prior defenses, Bera requires neither retraining of VLAs nor any changes to the training pipeline. Extensive experiments across multiple embodied platforms and tasks show that Bera effectively maintains nominal performance, significantly reduces attack success rates, and consistently restores benign behavior from backdoored outputs, thereby offering a robust and practical defense mechanism for securing robotic systems.
Live streaming has become a cornerstone of today's internet, enabling massive real-time social interactions. However, it faces severe risks arising from sparse, coordinated malicious behaviors among multiple participants, which are often concealed within normal activities and challenging to detect timely and accurately. In this work, we provide a pioneering study on risk assessment in live streaming rooms, characterized by weak supervision where only room-level labels are available. We formulate the task as a Multiple Instance Learning (MIL) problem, treating each room as a bag and defining structured user-timeslot capsules as instances. These capsules represent subsequences of user actions within specific time windows, encapsulating localized behavioral patterns. Based on this formulation, we propose AC-MIL, an Action-aware Capsule MIL framework that models both individual behaviors and group-level coordination patterns. AC-MIL captures multi-granular semantics and behavioral cues through a serial and parallel architecture that jointly encodes temporal dynamics and cross-user dependencies. These signals are integrated for robust room-level risk prediction, while also offering interpretable evidence at the behavior segment level. Extensive experiments on large-scale industrial datasets from Douyin demonstrate that AC-MIL significantly outperforms MIL and sequential baselines, establishing new state-of-the-art performance in room-level risk assessment for live streaming. Moreover, AC-MIL provides capsule-level interpretability, enabling identification of risky behavior segments as actionable evidence for intervention. The project page is available at: https://qiaoyran.github.io/AC-MIL/.
As LLMs expand from assistance to decision support, a dangerous pattern emerges: fluent agreement without calibrated judgment. Low-friction assistants can become sycophantic, baking in implicit assumptions and pushing verification costs onto experts, while outcomes arrive too late to serve as reward signals. In deep-uncertainty decisions (where objectives are contested and reversals are costly), scaling fluent agreement amplifies poor commitments faster than it builds expertise. We argue reliable human-AI partnership requires a shift from answer generation to collaborative premise governance over a knowledge substrate, negotiating only what is decision-critical. A discrepancy-driven control loop operates over this substrate: detecting conflicts, localizing misalignment via typed discrepancies (teleological, epistemic, procedural), and triggering bounded negotiation through decision slices. Commitment gating blocks action on uncommitted load-bearing premises unless overridden under logged risk; value-gated challenge allocates probing under interaction cost. Trust then attaches to auditable premises and evidence standards, not conversational fluency. We illustrate with tutoring and propose falsifiable evaluation criteria.
The exploration of unknown, Global Navigation Satellite System (GNSS) denied environments by an autonomous communication-aware and collaborative group of Unmanned Aerial Vehicles (UAVs) presents significant challenges in coordination, perception, and decentralized decision-making. This paper implements Multi-Agent Reinforcement Learning (MARL) to address these challenges in a 2D indoor environment, using high-fidelity game-engine simulations (Godot) and continuous action spaces. Policy training aims to achieve emergent collaborative behaviours and decision-making under uncertainty using Network-Distributed Partially Observable Markov Decision Processes (ND-POMDPs). Each UAV is equipped with a Light Detection and Ranging (LiDAR) sensor and can share data (sensor measurements and a local occupancy map) with neighbouring agents. Inter-agent communication constraints include limited range, bandwidth and latency. Extensive ablation studies evaluated MARL training paradigms, reward function, communication system, neural network (NN) architecture, memory mechanisms, and POMDP formulations. This work jointly addresses several key limitations in prior research, namely reliance on discrete actions, single-agent or centralized formulations, assumptions of a priori knowledge and permanent connectivity, inability to handle dynamic obstacles, short planning horizons and architectural complexity in Recurrent NNs/Transformers. Results show that the scalable training paradigm, combined with a simplified architecture, enables rapid autonomous exploration of an indoor area. The implementation of Curriculum-Learning (five increasingly complex levels) also enabled faster, more robust training. This combination of high-fidelity simulation, MARL formulation, and computational efficiency establishes a strong foundation for deploying learned cooperative strategies in physical robotic systems.
Large language models can generate fluent answers that are unfaithful to the provided context, while many safeguards rely on external verification or a separate judge after generation. We introduce \emph{internal flow signatures} that audit decision formation from depthwise dynamics at a fixed inter-block monitoring boundary. The method stabilizes token-wise motion via bias-centered monitoring, then summarizes trajectories in compact \emph{moving} readout-aligned subspaces constructed from the top token and its close competitors within each depth window. Neighboring window frames are aligned by an orthogonal transport, yielding depth-comparable transported step lengths, turning angles, and subspace drift summaries that are invariant to within-window basis choices. A lightweight GRU validator trained on these signatures performs self-checking without modifying the base model. Beyond detection, the validator localizes a culprit depth event and enables a targeted refinement: the model rolls back to the culprit token and clamps an abnormal transported step at the identified block while preserving the orthogonal residual. The resulting pipeline provides actionable localization and low-overhead self-checking from internal decision dynamics. \emph{Code is available at} \texttt{github.com/EavnJeong/Internal-Flow-Signatures-for-Self-Checking-and-Refinement-in-LLMs}.
Large language models (LLMs) have shown promise in assisting cybersecurity tasks, yet existing approaches struggle with automatic vulnerability discovery and exploitation due to limited interaction, weak execution grounding, and a lack of experience reuse. We propose Co-RedTeam, a security-aware multi-agent framework designed to mirror real-world red-teaming workflows by integrating security-domain knowledge, code-aware analysis, execution-grounded iterative reasoning, and long-term memory. Co-RedTeam decomposes vulnerability analysis into coordinated discovery and exploitation stages, enabling agents to plan, execute, validate, and refine actions based on real execution feedback while learning from prior trajectories. Extensive evaluations on challenging security benchmarks demonstrate that Co-RedTeam consistently outperforms strong baselines across diverse backbone models, achieving over 60% success rate in vulnerability exploitation and over 10% absolute improvement in vulnerability detection. Ablation and iteration studies further confirm the critical role of execution feedback, structured interaction, and memory for building robust and generalizable cybersecurity agents.
Deploying learned control policies on humanoid robots is challenging: policies that appear robust in simulation can execute confidently in out-of-distribution (OOD) states after Sim-to-Real transfer, leading to silent failures that risk hardware damage. Although anomaly detection can mitigate these failures, prior methods are often incompatible with high-rate control, poorly calibrated at the extremely low false-positive rates required for practical deployment, or operate as black boxes that provide a binary stop signal without explaining why the robot drifted from nominal behavior. We present RAPT, a lightweight, self-supervised deployment-time monitor for 50Hz humanoid control. RAPT learns a probabilistic spatio-temporal manifold of nominal execution from simulation and evaluates execution-time predictive deviation as a calibrated, per-dimension signal. This yields (i) reliable online OOD detection under strict false-positive constraints and (ii) a continuous, interpretable measure of Sim-to-Real mismatch that can be tracked over time to quantify how far deployment has drifted from training. Beyond detection, we introduce an automated post-hoc root-cause analysis pipeline that combines gradient-based temporal saliency derived from RAPT's reconstruction objective with LLM-based reasoning conditioned on saliency and joint kinematics to produce semantic failure diagnoses in a zero-shot setting. We evaluate RAPT on a Unitree G1 humanoid across four complex tasks in simulation and on physical hardware. In large-scale simulation, RAPT improves True Positive Rate (TPR) by 37% over the strongest baseline at a fixed episode-level false positive rate of 0.5%. On real-world deployments, RAPT achieves a 12.5% TPR improvement and provides actionable interpretability, reaching 75% root-cause classification accuracy across 16 real-world failures using only proprioceptive data.
We study online inverse linear optimization, also known as contextual recommendation, where a learner sequentially infers an agent's hidden objective vector from observed optimal actions over feasible sets that change over time. The learner aims to recommend actions that perform well under the agent's true objective, and the performance is measured by the regret, defined as the cumulative gap between the agent's optimal values and those achieved by the learner's recommended actions. Prior work has established a regret bound of $O(d\log T)$, as well as a finite but exponentially large bound of $\exp(O(d\log d))$, where $d$ is the dimension of the optimization problem and $T$ is the time horizon, while a regret lower bound of $Ω(d)$ is known (Gollapudi et al. 2021; Sakaue et al. 2025). Whether a finite regret bound polynomial in $d$ is achievable or not has remained an open question. We partially resolve this by showing that when the feasible sets are M-convex -- a broad class that includes matroids -- a finite regret bound of $O(d\log d)$ is possible. We achieve this by combining a structural characterization of optimal solutions on M-convex sets with a geometric volume argument. Moreover, we extend our approach to adversarially corrupted feedback in up to $C$ rounds. We obtain a regret bound of $O((C+1)d\log d)$ without prior knowledge of $C$, by monitoring directed graphs induced by the observed feedback to detect corruptions adaptively.