Abstract:Despite the rapidly growing demand for multimodal retrieval, progress in this field remains severely constrained by a lack of training data. In this paper, we introduce MegaPairs, a novel data synthesis method that leverages vision language models (VLMs) and open-domain images, together with a massive synthetic dataset generated from this method. Our empirical analysis shows that MegaPairs generates high-quality data, enabling the multimodal retriever to significantly outperform the baseline model trained on 70$\times$ more data from existing datasets. Moreover, since MegaPairs solely relies on general image corpora and open-source VLMs, it can be easily scaled up, enabling continuous improvements in retrieval performance. In this stage, we produced more than 26 million training instances and trained several models of varying sizes using this data. These new models achieve state-of-the-art zero-shot performance across 4 popular composed image retrieval (CIR) benchmarks and the highest overall performance on the 36 datasets provided by MMEB. They also demonstrate notable performance improvements with additional downstream fine-tuning. Our produced dataset, well-trained models, and data synthesis pipeline will be made publicly available to facilitate the future development of this field.
Abstract:With the development of deep learning techniques, deep recommendation models also achieve remarkable improvements in terms of recommendation accuracy. However, due to the large number of candidate items in practice and the high cost of preference computation, these methods also suffer from low efficiency of recommendation. The recently proposed tree-based deep recommendation models alleviate the problem by directly learning tree structure and representations under the guidance of recommendation objectives. However, such models have shortcomings. The max-heap assumption in the hierarchical tree, in which the preference for a parent node should be the maximum between the preferences for its children, is difficult to satisfy in their binary classification objectives. To this end, we propose Tree-based Deep Retrieval (TDR for short) for efficient recommendation. In TDR, all the trees generated during the training process are retained to form the forest. When learning the node representation of each tree, we have to satisfy the max-heap assumption as much as possible and mimic beam search behavior over the tree in the training stage. This is achieved by TDR to regard the training task as multi-classification over tree nodes at the same level. However, the number of tree nodes grows exponentially with levels, making us train the preference model with the guidance of the sampled-softmax technique. The experiments are conducted on real-world datasets, validating the effectiveness of the proposed preference model learning method and tree learning method.
Abstract:As a prevalent and dynamically regulated epigenetic modification, 5-formylcytidine (f5C) is crucial in various biological processes. However, traditional experimental methods for f5C detection are often laborious and time-consuming, limiting their ability to map f5C sites across the transcriptome comprehensively. While computational approaches offer a cost-effective and high-throughput alternative, no recognition model for f5C has been developed to date. Drawing inspiration from language models in natural language processing, this study presents f5C-finder, an ensemble neural network-based model utilizing multi-head attention for the identification of f5C. Five distinct feature extraction methods were employed to construct five individual artificial neural networks, and these networks were subsequently integrated through ensemble learning to create f5C-finder. 10-fold cross-validation and independent tests demonstrate that f5C-finder achieves state-of-the-art (SOTA) performance with AUC of 0.807 and 0.827, respectively. The result highlights the effectiveness of biological language model in capturing both the order (sequential) and functional meaning (semantics) within genomes. Furthermore, the built-in interpretability allows us to understand what the model is learning, creating a bridge between identifying key sequential elements and a deeper exploration of their biological functions.
Abstract:In this paper, we explore FP8 low-bit data formats for efficient training of large language models (LLMs). Our key insight is that most variables, such as gradients and optimizer states, in LLM training can employ low-precision data formats without compromising model accuracy and requiring no changes to hyper-parameters. Specifically, we propose a new FP8 automatic mixed-precision framework for training LLMs. This framework offers three levels of FP8 utilization to streamline mixed-precision and distributed parallel training for LLMs. It gradually incorporates 8-bit gradients, optimizer states, and distributed learning in an incremental manner. Experiment results show that, during the training of GPT-175B model on H100 GPU platform, our FP8 mixed-precision training framework not only achieved a remarkable 42% reduction in real memory usage but also ran 64% faster than the widely adopted BF16 framework (i.e., Megatron-LM), surpassing the speed of Nvidia Transformer Engine by 17%. This largely reduces the training costs for large foundation models. Furthermore, our FP8 mixed-precision training methodology is generic. It can be seamlessly applied to other tasks such as LLM instruction tuning and reinforcement learning with human feedback, offering savings in fine-tuning expenses. Our FP8 low-precision training framework is open-sourced at {https://github.com/Azure/MS-AMP}{aka.ms/MS.AMP}.
Abstract:Text-to-Speech (TTS) synthesis using deep learning relies on voice quality. Modern TTS models are advanced, but they need large amount of data. Given the growing computational complexity of these models and the scarcity of large, high-quality datasets, this research focuses on transfer learning, especially on few-shot, low-resource, and customized datasets. In this research, "low-resource" specifically refers to situations where there are limited amounts of training data, such as a small number of audio recordings and corresponding transcriptions for a particular language or dialect. This thesis, is rooted in the pressing need to find TTS models that require less training time, fewer data samples, yet yield high-quality voice output. The research evaluates TTS state-of-the-art model transfer learning capabilities through a thorough technical analysis. It then conducts a hands-on experimental analysis to compare models' performance in a constrained dataset. This study investigates the efficacy of modern TTS systems with transfer learning on specialized datasets and a model that balances training efficiency and synthesis quality. Initial hypotheses suggest that transfer learning could significantly improve TTS models' performance on compact datasets, and an optimal model may exist for such unique conditions. This thesis predicts a rise in transfer learning in TTS as data scarcity increases. In the future, custom TTS applications will favour models optimized for specific datasets over generic, data-intensive ones.
Abstract:We introduce a highly performant 3D object detector for point clouds using the DETR framework. The prior attempts all end up with suboptimal results because they fail to learn accurate inductive biases from the limited scale of training data. In particular, the queries often attend to points that are far away from the target objects, violating the locality principle in object detection. To address the limitation, we introduce a novel 3D Vertex Relative Position Encoding (3DV-RPE) method which computes position encoding for each point based on its relative position to the 3D boxes predicted by the queries in each decoder layer, thus providing clear information to guide the model to focus on points near the objects, in accordance with the principle of locality. In addition, we systematically improve the pipeline from various aspects such as data normalization based on our understanding of the task. We show exceptional results on the challenging ScanNetV2 benchmark, achieving significant improvements over the previous 3DETR in $\rm{AP}_{25}$/$\rm{AP}_{50}$ from 65.0\%/47.0\% to 77.8\%/66.0\%, respectively. In addition, our method sets a new record on ScanNetV2 and SUN RGB-D datasets.Code will be released at http://github.com/yichaoshen-MS/V-DETR.
Abstract:Human pose is typically represented by a coordinate vector of body joints or their heatmap embeddings. While easy for data processing, unrealistic pose estimates are admitted due to the lack of dependency modeling between the body joints. In this paper, we present a structured representation, named Pose as Compositional Tokens (PCT), to explore the joint dependency. It represents a pose by M discrete tokens with each characterizing a sub-structure with several interdependent joints. The compositional design enables it to achieve a small reconstruction error at a low cost. Then we cast pose estimation as a classification task. In particular, we learn a classifier to predict the categories of the M tokens from an image. A pre-learned decoder network is used to recover the pose from the tokens without further post-processing. We show that it achieves better or comparable pose estimation results as the existing methods in general scenarios, yet continues to work well when occlusion occurs, which is ubiquitous in practice. The code and models are publicly available at https://github.com/Gengzigang/PCT.
Abstract:Frozen pretrained models have become a viable alternative to the pretraining-then-finetuning paradigm for transfer learning. However, with frozen models there are relatively few parameters available for adapting to downstream tasks, which is problematic in computer vision where tasks vary significantly in input/output format and the type of information that is of value. In this paper, we present a study of frozen pretrained models when applied to diverse and representative computer vision tasks, including object detection, semantic segmentation and video action recognition. From this empirical analysis, our work answers the questions of what pretraining task fits best with this frozen setting, how to make the frozen setting more flexible to various downstream tasks, and the effect of larger model sizes. We additionally examine the upper bound of performance using a giant frozen pretrained model with 3 billion parameters (SwinV2-G) and find that it reaches competitive performance on a varied set of major benchmarks with only one shared frozen base network: 60.0 box mAP and 52.2 mask mAP on COCO object detection test-dev, 57.6 val mIoU on ADE20K semantic segmentation, and 81.7 top-1 accuracy on Kinetics-400 action recognition. With this work, we hope to bring greater attention to this promising path of freezing pretrained image models.
Abstract:In recent years, Mixture-of-Experts (MoE) has emerged as a promising technique for deep learning that can scale the model capacity to trillion-plus parameters while reducing the computing cost via sparse computation. While MoE opens a new frontier of exceedingly large models, its implementation over thousands of GPUs has been limited due to mismatch between the dynamic nature of MoE and static parallelism/pipelining of the system. We present Tutel, a highly scalable stack design and implementation for MoE with dynamically adaptive parallelism and pipelining. Tutel delivers adaptive parallelism switching and adaptive pipelining at runtime, which achieves up to 1.74x and 2.00x single MoE layer speedup, respectively. We also propose a novel two-dimensional hierarchical algorithm for MoE communication speedup that outperforms the previous state-of-the-art up to 20.7x over 2,048 GPUs. Aggregating all techniques, Tutel finally delivers 4.96x and 5.75x speedup of a single MoE layer on 16 GPUs and 2,048 GPUs, respectively, over Fairseq: Meta's Facebook AI Research Sequence-to-Sequence Toolkit (Tutel is now partially adopted by Fairseq). Tutel source code is available in public: https://github.com/microsoft/tutel . Our evaluation shows that Tutel efficiently and effectively runs a real-world MoE-based model named SwinV2-MoE, built upon Swin Transformer V2, a state-of-the-art computer vision architecture. On efficiency, Tutel accelerates SwinV2-MoE, achieving up to 1.55x and 2.11x speedup in training and inference over Fairseq, respectively. On effectiveness, the SwinV2-MoE model achieves superior accuracy in both pre-training and down-stream computer vision tasks such as COCO object detection than the counterpart dense model, indicating the readiness of Tutel for end-to-end real-world model training and inference. SwinV2-MoE is open sourced in https://github.com/microsoft/Swin-Transformer .
Abstract:We present techniques for scaling Swin Transformer up to 3 billion parameters and making it capable of training with images of up to 1,536$\times$1,536 resolution. By scaling up capacity and resolution, Swin Transformer sets new records on four representative vision benchmarks: 84.0% top-1 accuracy on ImageNet-V2 image classification, 63.1/54.4 box/mask mAP on COCO object detection, 59.9 mIoU on ADE20K semantic segmentation, and 86.8% top-1 accuracy on Kinetics-400 video action classification. Our techniques are generally applicable for scaling up vision models, which has not been widely explored as that of NLP language models, partly due to the following difficulties in training and applications: 1) vision models often face instability issues at scale and 2) many downstream vision tasks require high resolution images or windows and it is not clear how to effectively transfer models pre-trained at low resolutions to higher resolution ones. The GPU memory consumption is also a problem when the image resolution is high. To address these issues, we present several techniques, which are illustrated by using Swin Transformer as a case study: 1) a post normalization technique and a scaled cosine attention approach to improve the stability of large vision models; 2) a log-spaced continuous position bias technique to effectively transfer models pre-trained at low-resolution images and windows to their higher-resolution counterparts. In addition, we share our crucial implementation details that lead to significant savings of GPU memory consumption and thus make it feasible to train large vision models with regular GPUs. Using these techniques and self-supervised pre-training, we successfully train a strong 3B Swin Transformer model and effectively transfer it to various vision tasks involving high-resolution images or windows, achieving the state-of-the-art accuracy on a variety of benchmarks.