Abstract:Large Language Models (LLMs) have become essential in advancing natural language processing (NLP) tasks, but their sequential token generation limits inference speed. Multi-Draft Speculative Decoding (MDSD) offers a promising solution by using a smaller draft model to generate multiple token sequences, which the target LLM verifies in parallel. However, current heuristic approaches, such as Recursive Rejection Sampling (RRS), suffer from low acceptance rates in subsequent drafts, limiting the advantages of using multiple drafts. Meanwhile, Optimal Transport with Membership Cost (OTM) can theoretically improve acceptance rates, but its computational cost is too high for real-time use. We present SpecHub, a novel, efficient sampling-verification method for MDSD that improves acceptance rates with only linear computational overhead. By simplifying the OTM problem into a compact Linear Programming model, SpecHub significantly reduces computational complexity. It further accelerates sampling by leveraging a sparse joint distribution, focusing computation on high-probability token sequences. In extensive experiments, Spechub consistently generates 0.05-0.27 and 0.02-0.16 more tokens per step than RRS and RRS without replacement. We attach our code at \url{https://github.com/MasterGodzilla/Speculative_decoding_OT}.
Abstract:Large Language Models (LLMs) are constrained by outdated information and a tendency to generate incorrect data, commonly referred to as "hallucinations." Retrieval-Augmented Generation (RAG) addresses these limitations by combining the strengths of retrieval-based methods and generative models. This approach involves retrieving relevant information from a large, up-to-date dataset and using it to enhance the generation process, leading to more accurate and contextually appropriate responses. Despite its benefits, RAG introduces a new attack surface for LLMs, particularly because RAG databases are often sourced from public data, such as the web. In this paper, we propose \TrojRAG{} to identify the vulnerabilities and attacks on retrieval parts (RAG database) and their indirect attacks on generative parts (LLMs). Specifically, we identify that poisoning several customized content passages could achieve a retrieval backdoor, where the retrieval works well for clean queries but always returns customized poisoned adversarial queries. Triggers and poisoned passages can be highly customized to implement various attacks. For example, a trigger could be a semantic group like "The Republican Party, Donald Trump, etc." Adversarial passages can be tailored to different contents, not only linked to the triggers but also used to indirectly attack generative LLMs without modifying them. These attacks can include denial-of-service attacks on RAG and semantic steering attacks on LLM generations conditioned by the triggers. Our experiments demonstrate that by just poisoning 10 adversarial passages can induce 98.2\% success rate to retrieve the adversarial passages. Then, these passages can increase the reject ratio of RAG-based GPT-4 from 0.01\% to 74.6\% or increase the rate of negative responses from 0.22\% to 72\% for targeted queries.
Abstract:The evolution of Large Language Models (LLMs) like ChatGPT and GPT-4 has sparked discussions on the advent of Artificial General Intelligence (AGI). However, replicating such advancements in open-source models has been challenging. This paper introduces InternLM2, an open-source LLM that outperforms its predecessors in comprehensive evaluations across 6 dimensions and 30 benchmarks, long-context modeling, and open-ended subjective evaluations through innovative pre-training and optimization techniques. The pre-training process of InternLM2 is meticulously detailed, highlighting the preparation of diverse data types including text, code, and long-context data. InternLM2 efficiently captures long-term dependencies, initially trained on 4k tokens before advancing to 32k tokens in pre-training and fine-tuning stages, exhibiting remarkable performance on the 200k ``Needle-in-a-Haystack" test. InternLM2 is further aligned using Supervised Fine-Tuning (SFT) and a novel Conditional Online Reinforcement Learning from Human Feedback (COOL RLHF) strategy that addresses conflicting human preferences and reward hacking. By releasing InternLM2 models in different training stages and model sizes, we provide the community with insights into the model's evolution.
Abstract:Deep learning techniques have demonstrated great potential for accurately estimating brain age by analyzing Magnetic Resonance Imaging (MRI) data from healthy individuals. However, current methods for brain age estimation often directly utilize whole input images, overlooking two important considerations: 1) the heterogeneous nature of brain aging, where different brain regions may degenerate at different rates, and 2) the existence of age-independent redundancies in brain structure. To overcome these limitations, we propose a Dual Graph Attention based Disentanglement Multi-instance Learning (DGA-DMIL) framework for improving brain age estimation. Specifically, the 3D MRI data, treated as a bag of instances, is fed into a 2D convolutional neural network backbone, to capture the unique aging patterns in MRI. A dual graph attention aggregator is then proposed to learn the backbone features by exploiting the intra- and inter-instance relationships. Furthermore, a disentanglement branch is introduced to separate age-related features from age-independent structural representations to ameliorate the interference of redundant information on age prediction. To verify the effectiveness of the proposed framework, we evaluate it on two datasets, UK Biobank and ADNI, containing a total of 35,388 healthy individuals. Our proposed model demonstrates exceptional accuracy in estimating brain age, achieving a remarkable mean absolute error of 2.12 years in the UK Biobank. The results establish our approach as state-of-the-art compared to other competing brain age estimation models. In addition, the instance contribution scores identify the varied importance of brain areas for aging prediction, which provides deeper insights into the understanding of brain aging.
Abstract:Large language models (LLMs) are great at processing multiple natural language processing tasks, but their abilities are constrained by inferior performance with long context, slow inference speed, and the high cost of computing the results. Deploying LLMs with precise and informative context helps users process large-scale datasets more effectively and cost-efficiently. Existing works rely on compressing long prompt contexts into soft prompts. However, soft prompt compression encounters limitations in transferability across different LLMs, especially API-based LLMs. To this end, this work aims to compress lengthy prompts in the form of natural language with LLM transferability. This poses two challenges: (i) Natural Language (NL) prompts are incompatible with back-propagation, and (ii) NL prompts lack flexibility in imposing length constraints. In this work, we propose a Natural Language Prompt Encapsulation (Nano-Capsulator) framework compressing original prompts into NL formatted Capsule Prompt while maintaining the prompt utility and transferability. Specifically, to tackle the first challenge, the Nano-Capsulator is optimized by a reward function that interacts with the proposed semantics preserving loss. To address the second question, the Nano-Capsulator is optimized by a reward function featuring length constraints. Experimental results demonstrate that the Capsule Prompt can reduce 81.4% of the original length, decrease inference latency up to 4.5x, and save 80.1% of budget overheads while providing transferability across diverse LLMs and different datasets.
Abstract:Large language models (LLMs), exemplified by ChatGPT, have gained considerable attention for their excellent natural language processing capabilities. Nonetheless, these LLMs present many challenges, particularly in the realm of trustworthiness. Therefore, ensuring the trustworthiness of LLMs emerges as an important topic. This paper introduces TrustLLM, a comprehensive study of trustworthiness in LLMs, including principles for different dimensions of trustworthiness, established benchmark, evaluation, and analysis of trustworthiness for mainstream LLMs, and discussion of open challenges and future directions. Specifically, we first propose a set of principles for trustworthy LLMs that span eight different dimensions. Based on these principles, we further establish a benchmark across six dimensions including truthfulness, safety, fairness, robustness, privacy, and machine ethics. We then present a study evaluating 16 mainstream LLMs in TrustLLM, consisting of over 30 datasets. Our findings firstly show that in general trustworthiness and utility (i.e., functional effectiveness) are positively related. Secondly, our observations reveal that proprietary LLMs generally outperform most open-source counterparts in terms of trustworthiness, raising concerns about the potential risks of widely accessible open-source LLMs. However, a few open-source LLMs come very close to proprietary ones. Thirdly, it is important to note that some LLMs may be overly calibrated towards exhibiting trustworthiness, to the extent that they compromise their utility by mistakenly treating benign prompts as harmful and consequently not responding. Finally, we emphasize the importance of ensuring transparency not only in the models themselves but also in the technologies that underpin trustworthiness. Knowing the specific trustworthy technologies that have been employed is crucial for analyzing their effectiveness.
Abstract:Prompt tuning is one of the most effective solutions to adapting a fixed pre-trained language model (PLM) for various downstream tasks, especially with only a few input samples. However, the security issues, e.g., Trojan attacks, of prompt tuning on a few data samples are not well-studied. Transferring established data poisoning attacks directly to few-shot prompt tuning presents multiple challenges. One significant issue is the \textit{poisoned imbalance issue}, where non-target class samples are added to the target class, resulting in a greater number of target-class samples compared to non-target class. While this issue is not critical in regular tuning, it significantly hampers the few-shot prompt tuning, making it difficult to simultaneously achieve a high attack success rate (ASR) and maintain clean data accuracy (CDA). Additionally, few-shot prompting is prone to overfitting in terms of both ASR and CDA. In this paper, we introduce \textit{TrojFSP}, a method designed to address the challenges. To solve the poisoned imbalance issue, we develop a \textit{Target-Class Shrink (TC-Shrink)} technique, which aims to equalize the number of poisoning samples. To combat overfitting, we employ a \textit{Selective Token Poisoning} technique to boost attack performance. Furthermore, we introduce a \textit{Trojan-Trigger Attention} objective function to amplify the attention of the poisoned trojan prompt on triggers. Experiments show that our TrojFSP achieves an ASR of over 99\% while maintaining negligible decreases in CDA across various PLMs and datasets.
Abstract:The emergence of Artificial Intelligence (AI)-driven audio attacks has revealed new security vulnerabilities in voice control systems. While researchers have introduced a multitude of attack strategies targeting voice control systems (VCS), the continual advancements of VCS have diminished the impact of many such attacks. Recognizing this dynamic landscape, our study endeavors to comprehensively assess the resilience of commercial voice control systems against a spectrum of malicious audio attacks. Through extensive experimentation, we evaluate six prominent attack techniques across a collection of voice control interfaces and devices. Contrary to prevailing narratives, our results suggest that commercial voice control systems exhibit enhanced resistance to existing threats. Particularly, our research highlights the ineffectiveness of white-box attacks in black-box scenarios. Furthermore, the adversaries encounter substantial obstacles in obtaining precise gradient estimations during query-based interactions with commercial systems, such as Apple Siri and Samsung Bixby. Meanwhile, we find that current defense strategies are not completely immune to advanced attacks. Our findings contribute valuable insights for enhancing defense mechanisms in VCS. Through this survey, we aim to raise awareness within the academic community about the security concerns of VCS and advocate for continued research in this crucial area.
Abstract:The open source of large amounts of image data promotes the development of deep learning techniques. Along with this comes the privacy risk of these open-source image datasets being exploited by unauthorized third parties to train deep learning models for commercial or illegal purposes. To avoid the abuse of public data, a poisoning-based technique, the unlearnable example, is proposed to significantly degrade the generalization performance of models by adding a kind of imperceptible noise to the data. To further enhance its robustness against adversarial training, existing works leverage iterative adversarial training on both the defensive noise and the surrogate model. However, it still remains unknown whether the robustness of unlearnable examples primarily comes from the effect of enhancement in the surrogate model or the defensive noise. Observing that simply removing the adversarial noise on the training process of the defensive noise can improve the performance of robust unlearnable examples, we identify that solely the surrogate model's robustness contributes to the performance. Furthermore, we found a negative correlation exists between the robustness of defensive noise and the protection performance, indicating defensive noise's instability issue. Motivated by this, to further boost the robust unlearnable example, we introduce stable error-minimizing noise (SEM), which trains the defensive noise against random perturbation instead of the time-consuming adversarial perturbation to improve the stability of defensive noise. Through extensive experiments, we demonstrate that SEM achieves a new state-of-the-art performance on CIFAR-10, CIFAR-100, and ImageNet Subset in terms of both effectiveness and efficiency. The code is available at https://github.com/liuyixin-louis/Stable-Unlearnable-Example.
Abstract:Text-to-image diffusion models allow seamless generation of personalized images from scant reference photos. Yet, these tools, in the wrong hands, can fabricate misleading or harmful content, endangering individuals. To address this problem, existing poisoning-based approaches perturb user images in an imperceptible way to render them "unlearnable" from malicious uses. We identify two limitations of these defending approaches: i) sub-optimal due to the hand-crafted heuristics for solving the intractable bilevel optimization and ii) lack of robustness against simple data transformations like Gaussian filtering. To solve these challenges, we propose MetaCloak, which solves the bi-level poisoning problem with a meta-learning framework with an additional transformation sampling process to craft transferable and robust perturbation. Specifically, we employ a pool of surrogate diffusion models to craft transferable and model-agnostic perturbation. Furthermore, by incorporating an additional transformation process, we design a simple denoising-error maximization loss that is sufficient for causing transformation-robust semantic distortion and degradation in a personalized generation. Extensive experiments on the VGGFace2 and CelebA-HQ datasets show that MetaCloak outperforms existing approaches. Notably, MetaCloak can successfully fool online training services like Replicate, in a black-box manner, demonstrating the effectiveness of MetaCloak in real-world scenarios. Our code is available at https://github.com/liuyixin-louis/MetaCloak.