Abstract:Data is the lifeblood of AI, yet much of the most valuable data remains locked in silos due to privacy and regulations. As a result, AI remains heavily underutilized in many of the most important domains, including healthcare, education, and finance. Synthetic data generation (SDG), i.e. the generation of artificial data with a synthesizer trained on real data, offers an appealing solution to make data available while mitigating privacy concerns, however existing SDG-as-a-service workflow require data holders to trust providers with access to private data.We propose FHAIM, the first fully homomorphic encryption (FHE) framework for training a marginal-based synthetic data generator on encrypted tabular data. FHAIM adapts the widely used AIM algorithm to the FHE setting using novel FHE protocols, ensuring that the private data remains encrypted throughout and is released only with differential privacy guarantees. Our empirical analysis show that FHAIM preserves the performance of AIM while maintaining feasible runtimes.
Abstract:As LLMs proliferate with diverse capabilities and costs, LLM routing has emerged by learning to predict each LLM's quality and cost for a given query, then selecting the one with high quality and low cost. However, existing routers implicitly assume a single fixed quality and cost per LLM for each query, ignoring that the same LLM's quality varies with its output length. This causes routers to exclude powerful LLMs when their estimated cost exceeds the budget, missing the opportunity that these LLMs could still deliver high quality at reduced cost with shorter outputs. To address this, we introduce R2-Router, which treats output length budget as a controllable variable and jointly selects the best LLM and length budget, enforcing the budget via length-constrained instructions. This enables R2-Router to discover that a powerful LLM with constrained output can outperform a weaker LLM at comparable cost-efficient configurations invisible to prior methods. Together with the router framework, we construct R2-Bench, the first routing dataset capturing LLM behavior across diverse output length budgets. Experiments show that R2-Router achieves state-of-the-art performance at 4-5x lower cost compared with existing routers. This work opens a new direction: routing as reasoning, where routers evolve from reactive selectors to deliberate reasoners that explore which LLM to use and at what cost budget.
Abstract:Deep neural networks are highly susceptible to backdoor attacks, yet most defense methods to date rely on balanced data, overlooking the pervasive class imbalance in real-world scenarios that can amplify backdoor threats. This paper presents the first in-depth investigation of how the dataset imbalance amplifies backdoor vulnerability, showing that (i) the imbalance induces a majority-class bias that increases susceptibility and (ii) conventional defenses degrade significantly as the imbalance grows. To address this, we propose Randomized Probability Perturbation (RPP), a certified poisoned-sample detection framework that operates in a black-box setting using only model output probabilities. For any inspected sample, RPP determines whether the input has been backdoor-manipulated, while offering provable within-domain detectability guarantees and a probabilistic upper bound on the false positive rate. Extensive experiments on five benchmarks (MNIST, SVHN, CIFAR-10, TinyImageNet and ImageNet10) covering 10 backdoor attacks and 12 baseline defenses show that RPP achieves significantly higher detection accuracy than state-of-the-art defenses, particularly under dataset imbalance. RPP establishes a theoretical and practical foundation for defending against backdoor attacks in real-world environments with imbalanced data.
Abstract:Multi-agent systems (MAS) enable complex reasoning by coordinating multiple agents, but often incur high inference latency due to multi-step execution and repeated model invocations, severely limiting their scalability and usability in time-sensitive scenarios. Most existing approaches primarily optimize task performance and inference cost, and explicitly or implicitly assume sequential execution, making them less optimal for controlling latency under parallel execution. In this work, we investigate learning-based orchestration of multi-agent systems with explicit latency supervision under parallel execution. We propose Latency-Aware Multi-agent System (LAMaS), a latency-aware multi-agent orchestration framework that enables parallel execution and explicitly optimizes the critical execution path, allowing the controller to construct execution topology graphs with lower latency under parallel execution. Our experiments show that our approach reduces critical path length by 38-46% compared to the state-of-the-art baseline for multi-agent architecture search across multiple benchmarks, while maintaining or even improving task performance. These results highlight the importance of explicitly optimizing latency under parallel execution when designing efficient multi-agent systems. The code is available at https://github.com/xishi404/LAMaS
Abstract:As large language models (LLMs) adapted to sensitive domains such as medicine, their fluency raises safety risks, particularly regarding provenance and accountability. Watermarking embeds detectable patterns to mitigate these risks, yet its reliability in medical contexts remains untested. Existing benchmarks focus on detection-quality tradeoffs, overlooking factual risks under low-entropy settings often exploited by watermarking's reweighting strategy. We propose a medical-focused evaluation workflow that jointly assesses factual accuracy and coherence. Using GPT-Judger and further human validation, we introduce the Factuality-Weighted Score (FWS), a composite metric prioritizing factual accuracy beyond coherence to guide watermarking deployment in medical domains. Our evaluation shows current watermarking methods substantially compromise medical factuality, with entropy shifts degrading medical entity representation. These findings underscore the need for domain-aware watermarking approaches that preserve the integrity of medical content.




Abstract:Fully Homomorphic Encryption over the torus (TFHE) enables computation on encrypted data without decryption, making it a cornerstone of secure and confidential computing. Despite its potential in privacy preserving machine learning, secure multi party computation, private blockchain transactions, and secure medical diagnostics, its adoption remains limited due to cryptographic complexity and usability challenges. While various TFHE libraries and compilers exist, practical code generation remains a hurdle. We propose a compiler integrated framework to evaluate LLM inference and agentic optimization for TFHE code generation, focusing on logic gates and ReLU activation. Our methodology assesses error rates, compilability, and structural similarity across open and closedsource LLMs. Results highlight significant limitations in off-the-shelf models, while agentic optimizations such as retrieval augmented generation (RAG) and few-shot prompting reduce errors and enhance code fidelity. This work establishes the first benchmark for TFHE code generation, demonstrating how LLMs, when augmented with domain-specific feedback, can bridge the expertise gap in FHE code generation.




Abstract:Private Transformer inference using cryptographic protocols offers promising solutions for privacy-preserving machine learning; however, it still faces significant runtime overhead (efficiency issues) and challenges in handling long-token inputs (scalability issues). We observe that the Transformer's operational complexity scales quadratically with the number of input tokens, making it essential to reduce the input token length. Notably, each token varies in importance, and many inputs contain redundant tokens. Additionally, prior private inference methods that rely on high-degree polynomial approximations for non-linear activations are computationally expensive. Therefore, reducing the polynomial degree for less important tokens can significantly accelerate private inference. Building on these observations, we propose \textit{CipherPrune}, an efficient and scalable private inference framework that includes a secure encrypted token pruning protocol, a polynomial reduction protocol, and corresponding Transformer network optimizations. At the protocol level, encrypted token pruning adaptively removes unimportant tokens from encrypted inputs in a progressive, layer-wise manner. Additionally, encrypted polynomial reduction assigns lower-degree polynomials to less important tokens after pruning, enhancing efficiency without decryption. At the network level, we introduce protocol-aware network optimization via a gradient-based search to maximize pruning thresholds and polynomial reduction conditions while maintaining the desired accuracy. Our experiments demonstrate that CipherPrune reduces the execution overhead of private Transformer inference by approximately $6.1\times$ for 128-token inputs and $10.6\times$ for 512-token inputs, compared to previous methods, with only a marginal drop in accuracy. The code is publicly available at https://github.com/UCF-Lou-Lab-PET/cipher-prune-inference.




Abstract:In this study, we delve into the hidden threats posed to text watermarking by users with cross-lingual knowledge. While most research focuses on watermarking methods for English, there is a significant gap in evaluating these methods in cross-lingual contexts. This oversight neglects critical adversary scenarios involving cross-lingual users, creating uncertainty regarding the effectiveness of cross-lingual watermarking. We assess four watermarking techniques across four linguistically rich languages, examining watermark resilience and text quality across various parameters and attacks. Our focus is on a realistic scenario featuring adversaries with cross-lingual expertise, evaluating the adequacy of current watermarking methods against such challenges.




Abstract:Large language models (LLMs) are increasingly utilized in healthcare applications. However, their deployment in clinical practice raises significant safety concerns, including the potential spread of harmful information. This study systematically assesses the vulnerabilities of six LLMs to three advanced black-box jailbreaking techniques within medical contexts. To quantify the effectiveness of these techniques, we propose an automated and domain-adapted agentic evaluation pipeline. Experiment results indicate that leading commercial and open-source LLMs are highly vulnerable to medical jailbreaking attacks. To bolster model safety and reliability, we further investigate the effectiveness of Continual Fine-Tuning (CFT) in defending against medical adversarial attacks. Our findings underscore the necessity for evolving attack methods evaluation, domain-specific safety alignment, and LLM safety-utility balancing. This research offers actionable insights for advancing the safety and reliability of AI clinicians, contributing to ethical and effective AI deployment in healthcare.




Abstract:Large Multimodal Models (LMMs) have demonstrated impressive capabilities in visual-language tasks but face significant deployment challenges due to their high computational demands. While recent token reduction methods show promise for accelerating LMMs, they typically require extensive retraining or fine-tuning, making them impractical for many state-of-the-art models, especially those with proprietary training data. We propose freePruner, a training-free token reduction approach that can be directly applied to any open-source LMM without additional training. Unlike existing methods that rely heavily on token merging operations, freePruner employs a two-stage token selection strategy: (1) identifying pivotal tokens that capture high-level semantic information using our designed contribution degree metric, and (2) selecting complementary tokens that preserve essential low-level visual details through attention pattern analysis. Extensive experiments demonstrate that freePruner achieves 2x acceleration while maintaining comparable performance across mainstream visual question-answering benchmarks in the training-free setting. Moreover, freePruner is orthogonal to and can be combined with other post-training acceleration techniques, such as post-training quantization, providing a practical solution for efficient LMM deployment.