Abstract:In this paper, we propose a flexible SLAM framework, XRDSLAM. It adopts a modular code design and a multi-process running mechanism, providing highly reusable foundational modules such as unified dataset management, 3d visualization, algorithm configuration, and metrics evaluation. It can help developers quickly build a complete SLAM system, flexibly combine different algorithm modules, and conduct standardized benchmarking for accuracy and efficiency comparison. Within this framework, we integrate several state-of-the-art SLAM algorithms with different types, including NeRF and 3DGS based SLAM, and even odometry or reconstruction algorithms, which demonstrates the flexibility and extensibility. We also conduct a comprehensive comparison and evaluation of these integrated algorithms, analyzing the characteristics of each. Finally, we contribute all the code, configuration and data to the open-source community, which aims to promote the widespread research and development of SLAM technology within the open-source ecosystem.
Abstract:This study introduces a hypothesis-testing framework to assess whether large language models (LLMs) possess genuine reasoning abilities or primarily depend on token bias. We go beyond evaluating LLMs on accuracy; rather, we aim to investigate their token bias in solving logical reasoning tasks. Specifically, we develop carefully controlled synthetic datasets, featuring conjunction fallacy and syllogistic problems. Our framework outlines a list of hypotheses where token biases are readily identifiable, with all null hypotheses assuming genuine reasoning capabilities of LLMs. The findings in this study suggest, with statistical guarantee, that most LLMs still struggle with logical reasoning. While they may perform well on classic problems, their success largely depends on recognizing superficial patterns with strong token bias, thereby raising concerns about their actual reasoning and generalization abilities.
Abstract:Rationality is the quality of being guided by reason, characterized by logical thinking and decision-making that align with evidence and logical rules. This quality is essential for effective problem-solving, as it ensures that solutions are well-founded and systematically derived. Despite the advancements of large language models (LLMs) in generating human-like text with remarkable accuracy, they present biases inherited from the training data, inconsistency across different contexts, and difficulty understanding complex scenarios involving multiple layers of context. Therefore, recent research attempts to leverage the strength of multiple agents working collaboratively with various types of data and tools for enhanced consistency and reliability. To that end, this paper aims to understand whether multi-modal and multi-agent systems are advancing toward rationality by surveying the state-of-the-art works, identifying advancements over single-agent and single-modal systems in terms of rationality, and discussing open problems and future directions. We maintain an open repository at https://github.com/bowen-upenn/MMMA_Rationality.
Abstract:This paper examines the application of WiFi signals for real-world monitoring of daily activities in home healthcare scenarios. While the state-of-the-art of WiFi-based activity recognition is promising in lab environments, challenges arise in real-world settings due to environmental, subject, and system configuration variables, affecting accuracy and adaptability. The research involved deploying systems in various settings and analyzing data shifts. It aims to guide realistic development of robust, context-aware WiFi sensing systems for elderly care. The findings suggest a shift in WiFi-based activity sensing, bridging the gap between academic research and practical applications, enhancing life quality through technology.
Abstract:The information diffusion prediction on social networks aims to predict future recipients of a message, with practical applications in marketing and social media. While different prediction models all claim to perform well, general frameworks for performance evaluation remain limited. Here, we aim to identify a performance characteristic curve for a model, which captures its performance on tasks of different complexity. We propose a metric based on information entropy to quantify the randomness in diffusion data, then identify a scaling pattern between the randomness and the prediction accuracy of the model. Data points in the patterns by different sequence lengths, system sizes, and randomness all collapse into a single curve, capturing a model's inherent capability of making correct predictions against increased uncertainty. Given that this curve has such important properties that it can be used to evaluate the model, we define it as the performance characteristic curve of the model. The validity of the curve is tested by three prediction models in the same family, reaching conclusions in line with existing studies. Also, the curve is successfully applied to evaluate two distinct models from the literature. Our work reveals a pattern underlying the data randomness and prediction accuracy. The performance characteristic curve provides a new way to systematically evaluate models' performance, and sheds light on future studies on other frameworks for model evaluation.
Abstract:In this paper, we propose a high-precision SRAM-based CIM macro that can perform 4x4-bit MAC operations and yield 9-bit signed output. The inherent discharge branches of SRAM cells are utilized to apply time-modulated MAC and 9-bit ADC readout operations on two bit-line capacitors. The same principle is used for both MAC and A-to-D conversion ensuring high linearity and thus supporting large number of analog MAC accumulations. The memory cell-embedded ADC eliminates the use of separate ADCs and enhances energy and area efficiency. Additionally, two signal margin enhancement techniques, namely the MAC-folding and boosted-clipping schemes, are proposed to further improve the CIM computation accuracy.
Abstract:The interpretability of model has become one of the obstacles to its wide application in the high-stake fields. The usual way to obtain interpretability is to build a black-box first and then explain it using the post-hoc methods. However, the explanations provided by the post-hoc method are not always reliable. Instead, we design an intrinsically interpretable model based on RRL(Rule Representation Learner) for the Lending Club dataset. Specifically, features can be divided into three categories according to their characteristics of themselves and build three sub-networks respectively, each of which is similar to a neural network with a single hidden layer but can be equivalently converted into a set of rules. During the training, we learned tricks from previous research to effectively train binary weights. Finally, our model is compared with the tree-based model. The results show that our model is much better than the interpretable decision tree in performance and close to other black-box, which is of practical significance to both financial institutions and borrowers. More importantly, our model is used to test the correctness of the explanations generated by the post-hoc method, the results show that the post-hoc method is not always reliable.
Abstract:Name ambiguity is common in academic digital libraries, such as multiple authors having the same name. This creates challenges for academic data management and analysis, thus name disambiguation becomes necessary. The procedure of name disambiguation is to divide publications with the same name into different groups, each group belonging to a unique author. A large amount of attribute information in publications makes traditional methods fall into the quagmire of feature selection. These methods always select attributes artificially and equally, which usually causes a negative impact on accuracy. The proposed method is mainly based on representation learning for heterogeneous networks and clustering and exploits the self-attention technology to solve the problem. The presentation of publications is a synthesis of structural and semantic representations. The structural representation is obtained by meta-path-based sampling and a skip-gram-based embedding method, and meta-path level attention is introduced to automatically learn the weight of each feature. The semantic representation is generated using NLP tools. Our proposal performs better in terms of name disambiguation accuracy compared with baselines and the ablation experiments demonstrate the improvement by feature selection and the meta-path level attention in our method. The experimental results show the superiority of our new method for capturing the most attributes from publications and reducing the impact of redundant information.
Abstract:Cascade prediction aims at modeling information diffusion in the network. Most previous methods concentrate on mining either structural or sequential features from the network and the propagation path. Recent efforts devoted to combining network structure and sequence features by graph neural networks and recurrent neural networks. Nevertheless, the limitation of spectral or spatial methods restricts the improvement of prediction performance. Moreover, recurrent neural networks are time-consuming and computation-expensive, which causes the inefficiency of prediction. Here, we propose a novel method CCasGNN considering the individual profile, structural features, and sequence information. The method benefits from using a collaborative framework of GAT and GCN and stacking positional encoding into the layers of graph neural networks, which is different from all existing ones and demonstrates good performance. The experiments conducted on two real-world datasets confirm that our method significantly improves the prediction accuracy compared to state-of-the-art approaches. What's more, the ablation study investigates the contribution of each component in our method.
Abstract:The prediction for information diffusion on social networks has great practical significance in marketing and public opinion control. Cascade prediction aims to predict the individuals who will potentially repost the message on the social network. One kind of methods either exploit demographical, structural, and temporal features for prediction, or explicitly rely on particular information diffusion models. The other kind of models are fully data-driven and do not require a global network structure. Thus massive diffusion prediction models based on network embedding are proposed. These models embed the users into the latent space using their cascade information, but are lack of consideration for the intervene among users when embedding. In this paper, we propose an independent asymmetric embedding method to learn social embedding for cascade prediction. Different from existing methods, our method embeds each individual into one latent influence space and multiple latent susceptibility spaces. Furthermore, our method captures the co-occurrence regulation of user combination in cascades to improve the calculating effectiveness. The results of extensive experiments conducted on real-world datasets verify both the predictive accuracy and cost-effectiveness of our approach.