Abstract:What do we want from machine intelligence? We envision machines that are not just tools for thought, but partners in thought: reasonable, insightful, knowledgeable, reliable, and trustworthy systems that think with us. Current artificial intelligence (AI) systems satisfy some of these criteria, some of the time. In this Perspective, we show how the science of collaborative cognition can be put to work to engineer systems that really can be called ``thought partners,'' systems built to meet our expectations and complement our limitations. We lay out several modes of collaborative thought in which humans and AI thought partners can engage and propose desiderata for human-compatible thought partnerships. Drawing on motifs from computational cognitive science, we motivate an alternative scaling path for the design of thought partners and ecosystems around their use through a Bayesian lens, whereby the partners we construct actively build and reason over models of the human and world.
Abstract:In our era of rapid technological advancement, the research landscape for writing assistants has become increasingly fragmented across various research communities. We seek to address this challenge by proposing a design space as a structured way to examine and explore the multidimensional space of intelligent and interactive writing assistants. Through a large community collaboration, we explore five aspects of writing assistants: task, user, technology, interaction, and ecosystem. Within each aspect, we define dimensions (i.e., fundamental components of an aspect) and codes (i.e., potential options for each dimension) by systematically reviewing 115 papers. Our design space aims to offer researchers and designers a practical tool to navigate, comprehend, and compare the various possibilities of writing assistants, and aid in the envisioning and design of new writing assistants.
Abstract:We highlight the challenges faced by non-native speakers when using AI writing assistants to paraphrase text. Through an interview study with 15 non-native English speakers (NNESs) with varying levels of English proficiency, we observe that they face difficulties in assessing paraphrased texts generated by AI writing assistants, largely due to the lack of explanations accompanying the suggested paraphrases. Furthermore, we examine their strategies to assess AI-generated texts in the absence of such explanations. Drawing on the needs of NNESs identified in our interview, we propose four potential user interfaces to enhance the writing experience of NNESs using AI writing assistants. The proposed designs focus on incorporating explanations to better support NNESs in understanding and evaluating the AI-generated paraphrasing suggestions.
Abstract:Reconfigurable morphing surfaces provide new opportunities for advanced human-machine interfaces and bio-inspired robotics. Morphing into arbitrary surfaces on demand requires a device with a sufficiently large number of actuators and an inverse control strategy that can calculate the actuator stimulation necessary to achieve a target surface. The programmability of a morphing surface can be improved by increasing the number of independent actuators, but this increases the complexity of the control system. Thus, developing compact and efficient control interfaces and control algorithms is a crucial knowledge gap for the adoption of morphing surfaces in broad applications. In this work, we describe a passively addressed robotic morphing surface (PARMS) composed of matrix-arranged ionic actuators. To reduce the complexity of the physical control interface, we introduce passive matrix addressing. Matrix addressing allows the control of independent actuators using only 2N control inputs, which is significantly lower than control inputs required for traditional direct addressing. Our control algorithm is based on machine learning using finite element simulations as the training data. This machine learning approach allows both forward and inverse control with high precision in real time. Inverse control demonstrations show that the PARMS can dynamically morph into arbitrary pre-defined surfaces on demand. These innovations in actuator matrix control may enable future implementation of PARMS in wearables, haptics, and augmented reality/virtual reality (AR/VR).
Abstract:Many real-world applications of language models (LMs), such as code autocomplete and writing assistance, involve human-LM interaction. However, the main LM benchmarks are non-interactive in that a system produces output without human involvement. To evaluate human-LM interaction, we develop a new framework, Human-AI Language-based Interaction Evaluation (HALIE), that expands non-interactive evaluation along three dimensions, capturing (i) the interactive process, not only the final output; (ii) the first-person subjective experience, not just a third-party assessment; and (iii) notions of preference beyond quality. We then design five tasks ranging from goal-oriented to open-ended to capture different forms of interaction. On four state-of-the-art LMs (three variants of OpenAI's GPT-3 and AI21's J1-Jumbo), we find that non-interactive performance does not always result in better human-LM interaction and that first-person and third-party metrics can diverge, suggesting the importance of examining the nuances of human-LM interaction.
Abstract:While pretrained language models (PLMs) have greatly improved text generation, they have also been known to produce unfaithful or inappropriate content. In contrast, classic template-based systems provide strong guarantees of faithfulness at the cost of fluency. We propose TempLM, which achieves the best of both worlds by distilling a PLM into a template-based generator. On the E2E and SynthBio data-to-text datasets, we show that TempLM is more faithful than the original PLM and is more fluent than prior template systems. Notably, on an out-of-domain evaluation, TempLM reduces a finetuned BART model's unfaithfulness rate from 83% to 0%. In a human study, we find that TempLM's templates substantially improve upon human-written ones in BERTScore.
Abstract:Large language models (LMs) offer unprecedented language generation capabilities and exciting opportunities for interaction design. However, their highly context-dependent capabilities are difficult to grasp and are often subjectively interpreted. In this paper, we argue that by curating and analyzing large interaction datasets, the HCI community can foster more incisive examinations of LMs' generative capabilities. Exemplifying this approach, we present CoAuthor, a dataset designed for revealing GPT-3's capabilities in assisting creative and argumentative writing. CoAuthor captures rich interactions between 63 writers and four instances of GPT-3 across 1445 writing sessions. We demonstrate that CoAuthor can address questions about GPT-3's language, ideation, and collaboration capabilities, and reveal its contribution as a writing "collaborator" under various definitions of good collaboration. Finally, we discuss how this work may facilitate a more principled discussion around LMs' promises and pitfalls in relation to interaction design. The dataset and an interface for replaying the writing sessions are publicly available at https://coauthor.stanford.edu.
Abstract:AI is undergoing a paradigm shift with the rise of models (e.g., BERT, DALL-E, GPT-3) that are trained on broad data at scale and are adaptable to a wide range of downstream tasks. We call these models foundation models to underscore their critically central yet incomplete character. This report provides a thorough account of the opportunities and risks of foundation models, ranging from their capabilities (e.g., language, vision, robotics, reasoning, human interaction) and technical principles(e.g., model architectures, training procedures, data, systems, security, evaluation, theory) to their applications (e.g., law, healthcare, education) and societal impact (e.g., inequity, misuse, economic and environmental impact, legal and ethical considerations). Though foundation models are based on standard deep learning and transfer learning, their scale results in new emergent capabilities,and their effectiveness across so many tasks incentivizes homogenization. Homogenization provides powerful leverage but demands caution, as the defects of the foundation model are inherited by all the adapted models downstream. Despite the impending widespread deployment of foundation models, we currently lack a clear understanding of how they work, when they fail, and what they are even capable of due to their emergent properties. To tackle these questions, we believe much of the critical research on foundation models will require deep interdisciplinary collaboration commensurate with their fundamentally sociotechnical nature.
Abstract:We release a new benchmark for lexical substitution, the task of finding appropriate substitutes for a target word in a context. To assist humans with writing, lexical substitution systems can suggest words that humans cannot easily think of. However, existing benchmarks depend on human recall as the only source of data, and therefore lack coverage of the substitutes that would be most helpful to humans. Furthermore, annotators often provide substitutes of low quality, which are not actually appropriate in the given context. We collect higher-coverage and higher-quality data by framing lexical substitution as a classification problem, guided by the intuition that it is easier for humans to judge the appropriateness of candidate substitutes than conjure them from memory. To this end, we use a context-free thesaurus to produce candidates and rely on human judgement to determine contextual appropriateness. Compared to the previous largest benchmark, our Swords benchmark has 4.1x more substitutes per target word for the same level of quality, and its substitutes are 1.5x more appropriate (based on human judgement) for the same number of substitutes.
Abstract:We present a simple approach for text infilling, the task of predicting missing spans of text at any position in a document. While infilling could enable rich functionality especially for writing assistance tools, more attention has been devoted to language modeling---a special case of infilling where text is predicted at the end of a document. In this paper, we aim to extend the capabilities of language models (LMs) to the more general task of infilling. To this end, we train (or fine-tune) off-the-shelf LMs on sequences containing the concatenation of artificially-masked text and the text which was masked. We show that this approach, which we call infilling by language modeling, can enable LMs to infill entire sentences effectively on three different domains: short stories, scientific abstracts, and lyrics. Furthermore, we show that humans have difficulty identifying sentences infilled by our approach as machine-generated in the domain of short stories.