Abstract:Federated Learning (FL) is a distributed machine learning framework that trains accurate global models while preserving clients' privacy-sensitive data. However, most FL approaches assume that clients possess labeled data, which is often not the case in practice. Federated Semi-Supervised Learning (FSSL) addresses this label deficiency problem, targeting situations where only the server has a small amount of labeled data while clients do not. However, a significant performance gap exists between Centralized Semi-Supervised Learning (SSL) and FSSL. This gap arises from confirmation bias, which is more pronounced in FSSL due to multiple local training epochs and the separation of labeled and unlabeled data. We propose $(FL)^2$, a robust training method for unlabeled clients using sharpness-aware consistency regularization. We show that regularizing the original pseudo-labeling loss is suboptimal, and hence we carefully select unlabeled samples for regularization. We further introduce client-specific adaptive thresholding and learning status-aware aggregation to adjust the training process based on the learning progress of each client. Our experiments on three benchmark datasets demonstrate that our approach significantly improves performance and bridges the gap with SSL, particularly in scenarios with scarce labeled data.
Abstract:Developing new machine learning applications often requires the collection of new datasets. However, existing datasets may already contain relevant information to train models for new purposes. We propose SoundCollage: a framework to discover new classes within audio datasets by incorporating (1) an audio pre-processing pipeline to decompose different sounds in audio samples and (2) an automated model-based annotation mechanism to identify the discovered classes. Furthermore, we introduce clarity measure to assess the coherence of the discovered classes for better training new downstream applications. Our evaluations show that the accuracy of downstream audio classifiers within discovered class samples and held-out datasets improves over the baseline by up to 34.7% and 4.5%, respectively, highlighting the potential of SoundCollage in making datasets reusable by labeling with newly discovered classes. To encourage further research in this area, we open-source our code at https://github.com/nokia-bell-labs/audio-class-discovery.
Abstract:Large language models (LLMs) have demonstrated exceptional abilities across various domains. However, utilizing LLMs for ubiquitous sensing applications remains challenging as existing text-prompt methods show significant performance degradation when handling long sensor data sequences. We propose a visual prompting approach for sensor data using multimodal LLMs (MLLMs). We design a visual prompt that directs MLLMs to utilize visualized sensor data alongside the target sensory task descriptions. Additionally, we introduce a visualization generator that automates the creation of optimal visualizations tailored to a given sensory task, eliminating the need for prior task-specific knowledge. We evaluated our approach on nine sensory tasks involving four sensing modalities, achieving an average of 10% higher accuracy than text-based prompts and reducing token costs by 15.8x. Our findings highlight the effectiveness and cost-efficiency of visual prompts with MLLMs for various sensory tasks.
Abstract:Many mobile sensing applications utilize data from various modalities, including motion and physiological sensors in mobile and wearable devices. Federated Learning (FL) is particularly suitable for these applications thanks to its privacy-preserving feature. However, challenges such as limited battery life, poor network conditions, and sensor malfunctions can restrict the use of all available modalities for local model training. Additionally, existing multimodal FL systems also struggle with scalability and efficiency as the number of modality sources increases. To address these issues, we introduce FLISM, a framework designed to enable multimodal FL with incomplete modalities. FLISM leverages simulation technique to learn robust representations that can handle missing modalities and transfers model knowledge across clients with varying set of modalities. The evaluation results using three real-world datasets and simulations demonstrate FLISM's effective balance between model performance and system efficiency. It shows an average improvement of .067 in F1-score, while also reducing communication (2.69x faster) and computational (2.28x more efficient) overheads compared to existing methods addressing incomplete modalities. Moreover, in simulated scenarios involving tasks with a larger number of modalities, FLISM achieves a significant speedup of 3.23x~85.10x in communication and 3.73x~32.29x in computational efficiency.
Abstract:Test-time adaptation (TTA) has emerged as a viable solution to adapt pre-trained models to domain shifts using unlabeled test data. However, TTA faces challenges of adaptation failures due to its reliance on blind adaptation to unknown test samples in dynamic scenarios. Traditional methods for out-of-distribution performance estimation are limited by unrealistic assumptions in the TTA context, such as requiring labeled data or re-training models. To address this issue, we propose AETTA, a label-free accuracy estimation algorithm for TTA. We propose the prediction disagreement as the accuracy estimate, calculated by comparing the target model prediction with dropout inferences. We then improve the prediction disagreement to extend the applicability of AETTA under adaptation failures. Our extensive evaluation with four baselines and six TTA methods demonstrates that AETTA shows an average of 19.8%p more accurate estimation compared with the baselines. We further demonstrate the effectiveness of accuracy estimation with a model recovery case study, showcasing the practicality of our model recovery based on accuracy estimation. The source code is available at https://github.com/taeckyung/AETTA.
Abstract:Despite a rich history of investigating smartphone overuse intervention techniques, AI-based just-in-time adaptive intervention (JITAI) methods for overuse reduction are lacking. We develop Time2Stop, an intelligent, adaptive, and explainable JITAI system that leverages machine learning to identify optimal intervention timings, introduces interventions with transparent AI explanations, and collects user feedback to establish a human-AI loop and adapt the intervention model over time. We conducted an 8-week field experiment (N=71) to evaluate the effectiveness of both the adaptation and explanation aspects of Time2Stop. Our results indicate that our adaptive models significantly outperform the baseline methods on intervention accuracy (>32.8\% relatively) and receptivity (>8.0\%). In addition, incorporating explanations further enhances the effectiveness by 53.8\% and 11.4\% on accuracy and receptivity, respectively. Moreover, Time2Stop significantly reduces overuse, decreasing app visit frequency by 7.0$\sim$8.9\%. Our subjective data also echoed these quantitative measures. Participants preferred the adaptive interventions and rated the system highly on intervention time accuracy, effectiveness, and level of trust. We envision our work can inspire future research on JITAI systems with a human-AI loop to evolve with users.
Abstract:Psychiatrists diagnose mental disorders via the linguistic use of patients. Still, due to data privacy, existing passive mental health monitoring systems use alternative features such as activity, app usage, and location via mobile devices. We propose FedTherapist, a mobile mental health monitoring system that utilizes continuous speech and keyboard input in a privacy-preserving way via federated learning. We explore multiple model designs by comparing their performance and overhead for FedTherapist to overcome the complex nature of on-device language model training on smartphones. We further propose a Context-Aware Language Learning (CALL) methodology to effectively utilize smartphones' large and noisy text for mental health signal sensing. Our IRB-approved evaluation of the prediction of self-reported depression, stress, anxiety, and mood from 46 participants shows higher accuracy of FedTherapist compared with the performance with non-language features, achieving 0.15 AUROC improvement and 8.21% MAE reduction.
Abstract:Test-time adaptation (TTA) aims to address distributional shifts between training and testing data using only unlabeled test data streams for continual model adaptation. However, most TTA methods assume benign test streams, while test samples could be unexpectedly diverse in the wild. For instance, an unseen object or noise could appear in autonomous driving. This leads to a new threat to existing TTA algorithms; we found that prior TTA algorithms suffer from those noisy test samples as they blindly adapt to incoming samples. To address this problem, we present Screening-out Test-Time Adaptation (SoTTA), a novel TTA algorithm that is robust to noisy samples. The key enabler of SoTTA is two-fold: (i) input-wise robustness via high-confidence uniform-class sampling that effectively filters out the impact of noisy samples and (ii) parameter-wise robustness via entropy-sharpness minimization that improves the robustness of model parameters against large gradients from noisy samples. Our evaluation with standard TTA benchmarks with various noisy scenarios shows that our method outperforms state-of-the-art TTA methods under the presence of noisy samples and achieves comparable accuracy to those methods without noisy samples. The source code is available at https://github.com/taeckyung/SoTTA .
Abstract:We highlight the challenges faced by non-native speakers when using AI writing assistants to paraphrase text. Through an interview study with 15 non-native English speakers (NNESs) with varying levels of English proficiency, we observe that they face difficulties in assessing paraphrased texts generated by AI writing assistants, largely due to the lack of explanations accompanying the suggested paraphrases. Furthermore, we examine their strategies to assess AI-generated texts in the absence of such explanations. Drawing on the needs of NNESs identified in our interview, we propose four potential user interfaces to enhance the writing experience of NNESs using AI writing assistants. The proposed designs focus on incorporating explanations to better support NNESs in understanding and evaluating the AI-generated paraphrasing suggestions.
Abstract:Recent advances in machine learning showed that pre-training representations acquired via self-supervised learning could achieve high accuracy on tasks with small training data. Unlike in vision and natural language processing domains, such pre-training for IMU-based applications is challenging, as there are only a few publicly available datasets with sufficient size and diversity to learn generalizable representations. To overcome this problem, we propose IMG2IMU, a novel approach that adapts pre-train representation from large-scale images to diverse few-shot IMU sensing tasks. We convert the sensor data into visually interpretable spectrograms for the model to utilize the knowledge gained from vision. Further, we apply contrastive learning on an augmentation set we designed to learn representations that are tailored to interpreting sensor data. Our extensive evaluations on five different IMU sensing tasks show that IMG2IMU consistently outperforms the baselines, illustrating that vision knowledge can be incorporated into a few-shot learning environment for IMU sensing tasks.