Abstract:Developing new machine learning applications often requires the collection of new datasets. However, existing datasets may already contain relevant information to train models for new purposes. We propose SoundCollage: a framework to discover new classes within audio datasets by incorporating (1) an audio pre-processing pipeline to decompose different sounds in audio samples and (2) an automated model-based annotation mechanism to identify the discovered classes. Furthermore, we introduce clarity measure to assess the coherence of the discovered classes for better training new downstream applications. Our evaluations show that the accuracy of downstream audio classifiers within discovered class samples and held-out datasets improves over the baseline by up to 34.7% and 4.5%, respectively, highlighting the potential of SoundCollage in making datasets reusable by labeling with newly discovered classes. To encourage further research in this area, we open-source our code at https://github.com/nokia-bell-labs/audio-class-discovery.
Abstract:Photoplethysmography (PPG) is the most widely used non-invasive technique for monitoring biosignals and cardiovascular health, with applications in both clinical settings and consumer health through wearable devices. Current machine learning models trained on PPG signals are mostly task-specific and lack generalizability. Previous works often used single-device datasets, did not explore out-of-domain generalization, or did not release their models, hindering reproducibility and further research. We introduce PaPaGei, the first open foundation model for PPG signals. PaPaGei is pre-trained on more than 57,000 hours of 20 million unlabeled segments of PPG signals using publicly available datasets exclusively. We evaluate against popular time-series foundation models and other benchmarks on 20 tasks of 10 diverse datasets spanning cardiovascular health, sleep disorders, pregnancy monitoring, and wellbeing assessment. Our architecture incorporates novel representation learning approaches that leverage differences in PPG signal morphology across individuals, enabling it to capture richer representations than traditional contrastive learning methods. Across 20 tasks, PaPaGei improves classification and regression performance by an average of 6.3% and 2.9%, respectively, compared to other competitive time-series foundation models in at least 14 tasks. PaPaGei is more data- and parameter-efficient than other foundation models or methods, as it outperforms 70x larger models. Beyond accuracy, we also investigate robustness against different skin tones, establishing a benchmark for bias evaluations of future models. Notably, PaPaGei can be used out of the box as both a feature extractor and an encoder for other multimodal models, opening up new opportunities for multimodal health monitoring
Abstract:Contrastive learning (CL) has emerged as a promising approach for representation learning in time series data by embedding similar pairs closely while distancing dissimilar ones. However, existing CL methods often introduce false negative pairs (FNPs) by neglecting inherent characteristics and then randomly selecting distinct segments as dissimilar pairs, leading to erroneous representation learning, reduced model performance, and overall inefficiency. To address these issues, we systematically define and categorize FNPs in time series into semantic false negative pairs and temporal false negative pairs for the first time: the former arising from overlooking similarities in label categories, which correlates with similarities in non-stationarity and the latter from neglecting temporal proximity. Moreover, we introduce StatioCL, a novel CL framework that captures non-stationarity and temporal dependency to mitigate both FNPs and rectify the inaccuracies in learned representations. By interpreting and differentiating non-stationary states, which reflect the correlation between trends or temporal dynamics with underlying data patterns, StatioCL effectively captures the semantic characteristics and eliminates semantic FNPs. Simultaneously, StatioCL establishes fine-grained similarity levels based on temporal dependencies to capture varying temporal proximity between segments and to mitigate temporal FNPs. Evaluated on real-world benchmark time series classification datasets, StatioCL demonstrates a substantial improvement over state-of-the-art CL methods, achieving a 2.9% increase in Recall and a 19.2% reduction in FNPs. Most importantly, StatioCL also shows enhanced data efficiency and robustness against label scarcity.
Abstract:This non-archival index is not complete, as some accepted papers chose to opt-out of inclusion. The list of all accepted papers is available on the workshop website.
Abstract:Wearable technologies enable continuous monitoring of various health metrics, such as physical activity, heart rate, sleep, and stress levels. A key challenge with wearable data is obtaining quality labels. Unlike modalities like video where the videos themselves can be effectively used to label objects or events, wearable data do not contain obvious cues about the physical manifestation of the users and usually require rich metadata. As a result, label noise can become an increasingly thorny issue when labeling such data. In this paper, we propose a novel solution to address noisy label learning, entitled Few-Shot Human-in-the-Loop Refinement (FHLR). Our method initially learns a seed model using weak labels. Next, it fine-tunes the seed model using a handful of expert corrections. Finally, it achieves better generalizability and robustness by merging the seed and fine-tuned models via weighted parameter averaging. We evaluate our approach on four challenging tasks and datasets, and compare it against eight competitive baselines designed to deal with noisy labels. We show that FHLR achieves significantly better performance when learning from noisy labels and achieves state-of-the-art by a large margin, with up to 19% accuracy improvement under symmetric and asymmetric noise. Notably, we find that FHLR is particularly robust to increased label noise, unlike prior works that suffer from severe performance degradation. Our work not only achieves better generalization in high-stakes health sensing benchmarks but also sheds light on how noise affects commonly-used models.
Abstract:Wearable-based Human Activity Recognition (HAR) is a key task in human-centric machine learning due to its fundamental understanding of human behaviours. Due to the dynamic nature of human behaviours, continual learning promises HAR systems that are tailored to users' needs. However, because of the difficulty in collecting labelled data with wearable sensors, existing approaches that focus on supervised continual learning have limited applicability, while unsupervised continual learning methods only handle representation learning while delaying classifier training to a later stage. This work explores the adoption and adaptation of CaSSLe, a continual self-supervised learning model, and Kaizen, a semi-supervised continual learning model that balances representation learning and down-stream classification, for the task of wearable-based HAR. These schemes re-purpose contrastive learning for knowledge retention and, Kaizen combines that with self-training in a unified scheme that can leverage unlabelled and labelled data for continual learning. In addition to comparing state-of-the-art self-supervised continual learning schemes, we further investigated the importance of different loss terms and explored the trade-off between knowledge retention and learning from new tasks. In particular, our extensive evaluation demonstrated that the use of a weighting factor that reflects the ratio between learned and new classes achieves the best overall trade-off in continual learning.
Abstract:Self-supervised learning (SSL) has become the de facto training paradigm of large models where pre-training is followed by supervised fine-tuning using domain-specific data and labels. Hypothesizing that SSL models would learn more generic, hence less biased, representations, this study explores the impact of pre-training and fine-tuning strategies on fairness (i.e., performing equally on different demographic breakdowns). Motivated by human-centric applications on real-world timeseries data, we interpret inductive biases on the model, layer, and metric levels by systematically comparing SSL models to their supervised counterparts. Our findings demonstrate that SSL has the capacity to achieve performance on par with supervised methods while significantly enhancing fairness--exhibiting up to a 27% increase in fairness with a mere 1% loss in performance through self-supervision. Ultimately, this work underscores SSL's potential in human-centric computing, particularly high-stakes, data-scarce application domains like healthcare.
Abstract:How can we ensure that Ubiquitous Computing (UbiComp) research outcomes are both ethical and fair? While fairness in machine learning (ML) has gained traction in recent years, fairness in UbiComp remains unexplored. This workshop aims to discuss fairness in UbiComp research and its social, technical, and legal implications. From a social perspective, we will examine the relationship between fairness and UbiComp research and identify pathways to ensure that ubiquitous technologies do not cause harm or infringe on individual rights. From a technical perspective, we will initiate a discussion on data practices to develop bias mitigation approaches tailored to UbiComp research. From a legal perspective, we will examine how new policies shape our community's work and future research. We aim to foster a vibrant community centered around the topic of responsible UbiComp, while also charting a clear path for future research endeavours in this field.
Abstract:Large Language Models (LLMs) have demonstrated remarkable generalization across diverse tasks, leading individuals to increasingly use them as personal assistants and universal computing engines. Nevertheless, a notable obstacle emerges when feeding numerical/temporal data into these models, such as data sourced from wearables or electronic health records. LLMs employ tokenizers in their input that break down text into smaller units. However, tokenizers are not designed to represent numerical values and might struggle to understand repetitive patterns and context, treating consecutive values as separate tokens and disregarding their temporal relationships. Here, we discuss recent works that employ LLMs for human-centric tasks such as in mobile health sensing and present a case study showing that popular LLMs tokenize temporal data incorrectly. To address that, we highlight potential solutions such as prompt tuning with lightweight embedding layers as well as multimodal adapters, that can help bridge this "modality gap". While the capability of language models to generalize to other modalities with minimal or no finetuning is exciting, this paper underscores the fact that their outputs cannot be meaningful if they stumble over input nuances.
Abstract:Deep learning models have shown great promise in various healthcare monitoring applications. However, most healthcare datasets with high-quality (gold-standard) labels are small-scale, as directly collecting ground truth is often costly and time-consuming. As a result, models developed and validated on small-scale datasets often suffer from overfitting and do not generalize well to unseen scenarios. At the same time, large amounts of imprecise (silver-standard) labeled data, annotated by approximate methods with the help of modern wearables and in the absence of ground truth validation, are starting to emerge. However, due to measurement differences, this data displays significant label distribution shifts, which motivates the use of domain adaptation. To this end, we introduce UDAMA, a method with two key components: Unsupervised Domain Adaptation and Multidiscriminator Adversarial Training, where we pre-train on the silver-standard data and employ adversarial adaptation with the gold-standard data along with two domain discriminators. In particular, we showcase the practical potential of UDAMA by applying it to Cardio-respiratory fitness (CRF) prediction. CRF is a crucial determinant of metabolic disease and mortality, and it presents labels with various levels of noise (goldand silver-standard), making it challenging to establish an accurate prediction model. Our results show promising performance by alleviating distribution shifts in various label shift settings. Additionally, by using data from two free-living cohort studies (Fenland and BBVS), we show that UDAMA consistently outperforms up to 12% compared to competitive transfer learning and state-of-the-art domain adaptation models, paving the way for leveraging noisy labeled data to improve fitness estimation at scale.