Abstract:Political discourse datasets are important for gaining political insights, analyzing communication strategies or social science phenomena. Although numerous political discourse corpora exist, comprehensive, high-quality, annotated datasets are scarce. This is largely due to the substantial manual effort, multidisciplinarity, and expertise required for the nuanced annotation of rhetorical strategies and ideological contexts. In this paper, we present AgoraSpeech, a meticulously curated, high-quality dataset of 171 political speeches from six parties during the Greek national elections in 2023. The dataset includes annotations (per paragraph) for six natural language processing (NLP) tasks: text classification, topic identification, sentiment analysis, named entity recognition, polarization and populism detection. A two-step annotation was employed, starting with ChatGPT-generated annotations and followed by exhaustive human-in-the-loop validation. The dataset was initially used in a case study to provide insights during the pre-election period. However, it has general applicability by serving as a rich source of information for political and social scientists, journalists, or data scientists, while it can be used for benchmarking and fine-tuning NLP and large language models (LLMs).
Abstract:This chapter introduces a research project titled "Analyzing the Political Discourse: A Collaboration Between Humans and Artificial Intelligence", which was initiated in preparation for Greece's 2023 general elections. The project focused on the analysis of political leaders' campaign speeches, employing Artificial Intelligence (AI), in conjunction with an interdisciplinary team comprising journalists, a political scientist, and data scientists. The chapter delves into various aspects of political discourse analysis, including sentiment analysis, polarization, populism, topic detection, and Named Entities Recognition (NER). This experimental study investigates the capabilities of large language model (LLMs), and in particular OpenAI's ChatGPT, for analyzing political speech, evaluates its strengths and weaknesses, and highlights the essential role of human oversight in using AI in journalism projects and potentially other societal sectors. The project stands as an innovative example of human-AI collaboration (known also as "hybrid intelligence") within the realm of digital humanities, offering valuable insights for future initiatives.
Abstract:Nowadays, we delegate many of our decisions to Artificial Intelligence (AI) that acts either in solo or as a human companion in decisions made to support several sensitive domains, like healthcare, financial services and law enforcement. AI systems, even carefully designed to be fair, are heavily criticized for delivering misjudged and discriminated outcomes against individuals and groups. Numerous work on AI algorithmic fairness is devoted on Machine Learning pipelines which address biases and quantify fairness under a pure computational view. However, the continuous unfair and unjust AI outcomes, indicate that there is urgent need to understand AI as a sociotechnical system, inseparable from the conditions in which it is designed, developed and deployed. Although, the synergy of humans and machines seems imperative to make AI work, the significant impact of human and societal factors on AI bias is currently overlooked. We address this critical issue by following a radical new methodology under which human cognitive biases become core entities in our AI fairness overview. Inspired by the cognitive science definition and taxonomy of human heuristics, we identify how harmful human actions influence the overall AI lifecycle, and reveal human to AI biases hidden pathways. We introduce a new mapping, which justifies the human heuristics to AI biases reflections and we detect relevant fairness intensities and inter-dependencies. We envision that this approach will contribute in revisiting AI fairness under deeper human-centric case studies, revealing hidden biases cause and effects.
Abstract:Self-supervised learning (SSL) has become the de facto training paradigm of large models where pre-training is followed by supervised fine-tuning using domain-specific data and labels. Hypothesizing that SSL models would learn more generic, hence less biased, representations, this study explores the impact of pre-training and fine-tuning strategies on fairness (i.e., performing equally on different demographic breakdowns). Motivated by human-centric applications on real-world timeseries data, we interpret inductive biases on the model, layer, and metric levels by systematically comparing SSL models to their supervised counterparts. Our findings demonstrate that SSL has the capacity to achieve performance on par with supervised methods while significantly enhancing fairness--exhibiting up to a 27% increase in fairness with a mere 1% loss in performance through self-supervision. Ultimately, this work underscores SSL's potential in human-centric computing, particularly high-stakes, data-scarce application domains like healthcare.
Abstract:The field of mobile, wearable, and ubiquitous computing (UbiComp) is undergoing a revolutionary integration of machine learning. Devices can now diagnose diseases, predict heart irregularities, and unlock the full potential of human cognition. However, the underlying algorithms are not immune to biases with respect to sensitive attributes (e.g., gender, race), leading to discriminatory outcomes. The research communities of HCI and AI-Ethics have recently started to explore ways of reporting information about datasets to surface and, eventually, counter those biases. The goal of this work is to explore the extent to which the UbiComp community has adopted such ways of reporting and highlight potential shortcomings. Through a systematic review of papers published in the Proceedings of the ACM Interactive, Mobile, Wearable and Ubiquitous Technologies (IMWUT) journal over the past 5 years (2018-2022), we found that progress on algorithmic fairness within the UbiComp community lags behind. Our findings show that only a small portion (5%) of published papers adheres to modern fairness reporting, while the overwhelming majority thereof focuses on accuracy or error metrics. In light of these findings, our work provides practical guidelines for the design and development of ubiquitous technologies that not only strive for accuracy but also for fairness.
Abstract:Personal informatics (PI) systems, powered by smartphones and wearables, enable people to lead healthier lifestyles by providing meaningful and actionable insights that break down barriers between users and their health information. Today, such systems are used by billions of users for monitoring not only physical activity and sleep but also vital signs and women's and heart health, among others. %Despite their widespread usage, the processing of particularly sensitive personal data, and their proximity to domains known to be susceptible to bias, such as healthcare, bias in PI has not been investigated systematically. Despite their widespread usage, the processing of sensitive PI data may suffer from biases, which may entail practical and ethical implications. In this work, we present the first comprehensive empirical and analytical study of bias in PI systems, including biases in raw data and in the entire machine learning life cycle. We use the most detailed framework to date for exploring the different sources of bias and find that biases exist both in the data generation and the model learning and implementation streams. According to our results, the most affected minority groups are users with health issues, such as diabetes, joint issues, and hypertension, and female users, whose data biases are propagated or even amplified by learning models, while intersectional biases can also be observed.
Abstract:It is indisputable that physical activity is vital for an individual's health and wellness. However, a global prevalence of physical inactivity has induced significant personal and socioeconomic implications. In recent years, a significant amount of work has showcased the capabilities of self-tracking technology to create positive health behavior change. This work is motivated by the potential of personalized and adaptive goal-setting techniques in encouraging physical activity via self-tracking. To this end, we propose UBIWEAR, an end-to-end framework for intelligent physical activity prediction, with the ultimate goal to empower data-driven goal-setting interventions. To achieve this, we experiment with numerous machine learning and deep learning paradigms as a robust benchmark for physical activity prediction tasks. To train our models, we utilize, "MyHeart Counts", an open, large-scale dataset collected in-the-wild from thousands of users. We also propose a prescriptive framework for self-tracking aggregated data preprocessing, to facilitate data wrangling of real-world, noisy data. Our best model achieves a MAE of 1087 steps, 65% lower than the state of the art in terms of absolute error, proving the feasibility of the physical activity prediction task, and paving the way for future research.
Abstract:Named Entity Recognition and Intent Classification are among the most important subfields of the field of Natural Language Processing. Recent research has lead to the development of faster, more sophisticated and efficient models to tackle the problems posed by those two tasks. In this work we explore the effectiveness of two separate families of Deep Learning networks for those tasks: Bidirectional Long Short-Term networks and Transformer-based networks. The models were trained and tested on the ATIS benchmark dataset for both English and Greek languages. The purpose of this paper is to present a comparative study of the two groups of networks for both languages and showcase the results of our experiments. The models, being the current state-of-the-art, yielded impressive results and achieved high performance.
Abstract:Graph Representation Learning (GRL) has become essential for modern graph data mining and learning tasks. GRL aims to capture the graph's structural information and exploit it in combination with node and edge attributes to compute low-dimensional representations. While Graph Neural Networks (GNNs) have been used in state-of-the-art GRL architectures, they have been shown to suffer from over smoothing when many GNN layers need to be stacked. In a different GRL approach, spectral methods based on graph filtering have emerged addressing over smoothing; however, up to now, they employ traditional neural networks that cannot efficiently exploit the structure of graph data. Motivated by this, we propose PointSpectrum, a spectral method that incorporates a set equivariant network to account for a graph's structure. PointSpectrum enhances the efficiency and expressiveness of spectral methods, while it outperforms or competes with state-of-the-art GRL methods. Overall, PointSpectrum addresses over smoothing by employing a graph filter and captures a graph's structure through set equivariance, lying on the intersection of GNNs and spectral methods. Our findings are promising for the benefits and applicability of this architectural shift for spectral methods and GRL.
Abstract:Users in Online Social Networks (OSN) leaves traces that reflect their personality characteristics. The study of these traces is important for a number of fields, such as a social science, psychology, OSN, marketing, and others. Despite a marked increase on research in personality prediction on based on online behavior the focus has been heavily on individual personality traits largely neglecting relational facets of personality. This study aims to address this gap by providing a prediction model for a holistic personality profiling in OSNs that included socio-relational traits (attachment orientations) in combination with standard personality traits. Specifically, we first designed a feature engineering methodology that extracts a wide range of features (accounting for behavior, language, and emotions) from OSN accounts of users. Then, we designed a machine learning model that predicts scores for the psychological traits of the users based on the extracted features. The proposed model architecture is inspired by characteristics embedded in psychological theory, i.e, utilizing interrelations among personality facets, and leads to increased accuracy in comparison with the state of the art approaches. To demonstrate the usefulness of this approach, we applied our model to two datasets, one of random OSN users and one of organizational leaders, and compared their psychological profiles. Our findings demonstrate that the two groups can be clearly separated by only using their psychological profiles, which opens a promising direction for future research on OSN user characterization and classification.