Abstract:Political discourse datasets are important for gaining political insights, analyzing communication strategies or social science phenomena. Although numerous political discourse corpora exist, comprehensive, high-quality, annotated datasets are scarce. This is largely due to the substantial manual effort, multidisciplinarity, and expertise required for the nuanced annotation of rhetorical strategies and ideological contexts. In this paper, we present AgoraSpeech, a meticulously curated, high-quality dataset of 171 political speeches from six parties during the Greek national elections in 2023. The dataset includes annotations (per paragraph) for six natural language processing (NLP) tasks: text classification, topic identification, sentiment analysis, named entity recognition, polarization and populism detection. A two-step annotation was employed, starting with ChatGPT-generated annotations and followed by exhaustive human-in-the-loop validation. The dataset was initially used in a case study to provide insights during the pre-election period. However, it has general applicability by serving as a rich source of information for political and social scientists, journalists, or data scientists, while it can be used for benchmarking and fine-tuning NLP and large language models (LLMs).
Abstract:This paper introduces a collaborative, human-centered taxonomy of AI, algorithmic and automation harms. We argue that existing taxonomies, while valuable, can be narrow, unclear, typically cater to practitioners and government, and often overlook the needs of the wider public. Drawing on existing taxonomies and a large repository of documented incidents, we propose a taxonomy that is clear and understandable to a broad set of audiences, as well as being flexible, extensible, and interoperable. Through iterative refinement with topic experts and crowdsourced annotation testing, we propose a taxonomy that can serve as a powerful tool for civil society organisations, educators, policymakers, product teams and the general public. By fostering a greater understanding of the real-world harms of AI and related technologies, we aim to increase understanding, empower NGOs and individuals to identify and report violations, inform policy discussions, and encourage responsible technology development and deployment.