Abstract:Many mobile sensing applications utilize data from various modalities, including motion and physiological sensors in mobile and wearable devices. Federated Learning (FL) is particularly suitable for these applications thanks to its privacy-preserving feature. However, challenges such as limited battery life, poor network conditions, and sensor malfunctions can restrict the use of all available modalities for local model training. Additionally, existing multimodal FL systems also struggle with scalability and efficiency as the number of modality sources increases. To address these issues, we introduce FLISM, a framework designed to enable multimodal FL with incomplete modalities. FLISM leverages simulation technique to learn robust representations that can handle missing modalities and transfers model knowledge across clients with varying set of modalities. The evaluation results using three real-world datasets and simulations demonstrate FLISM's effective balance between model performance and system efficiency. It shows an average improvement of .067 in F1-score, while also reducing communication (2.69x faster) and computational (2.28x more efficient) overheads compared to existing methods addressing incomplete modalities. Moreover, in simulated scenarios involving tasks with a larger number of modalities, FLISM achieves a significant speedup of 3.23x~85.10x in communication and 3.73x~32.29x in computational efficiency.
Abstract:Despite a rich history of investigating smartphone overuse intervention techniques, AI-based just-in-time adaptive intervention (JITAI) methods for overuse reduction are lacking. We develop Time2Stop, an intelligent, adaptive, and explainable JITAI system that leverages machine learning to identify optimal intervention timings, introduces interventions with transparent AI explanations, and collects user feedback to establish a human-AI loop and adapt the intervention model over time. We conducted an 8-week field experiment (N=71) to evaluate the effectiveness of both the adaptation and explanation aspects of Time2Stop. Our results indicate that our adaptive models significantly outperform the baseline methods on intervention accuracy (>32.8\% relatively) and receptivity (>8.0\%). In addition, incorporating explanations further enhances the effectiveness by 53.8\% and 11.4\% on accuracy and receptivity, respectively. Moreover, Time2Stop significantly reduces overuse, decreasing app visit frequency by 7.0$\sim$8.9\%. Our subjective data also echoed these quantitative measures. Participants preferred the adaptive interventions and rated the system highly on intervention time accuracy, effectiveness, and level of trust. We envision our work can inspire future research on JITAI systems with a human-AI loop to evolve with users.
Abstract:As wearable devices become increasingly miniaturized and powerful, a new opportunity arises for instant and dynamic device-to-device collaboration and human-to-device interaction. However, this progress presents a unique challenge: these minimalist wearables lack inherent mechanisms for real-time authentication, posing significant risks to data privacy and overall security. To address this, we introduce Proteus that realizes an innovative concept of time-bound contextual bio-IDs, which are generated from on-device sensor data and embedded into a common latent space. These bio-IDs act as a time-bound unique user identifier that can be used to identify the wearer in a certain context. Proteus enables dynamic and contextual device collaboration as well as robust human-to-device interaction. Our evaluations demonstrate the effectiveness of our method, particularly in the context of minimalist wearables.
Abstract:Many applications that utilize sensors in mobile devices and apply machine learning to provide novel services have emerged. However, various factors such as different users, devices, environments, and hyperparameters, affect the performance for such applications, thus making the domain shift (i.e., distribution shift of a target user from the training source dataset) an important problem. Although recent domain adaptation techniques attempt to solve this problem, the complex interplay between the diverse factors often limits their effectiveness. We argue that accurately estimating the performance in untrained domains could significantly reduce performance uncertainty. We present DAPPER (Domain AdaPtation Performance EstimatoR) that estimates the adaptation performance in a target domain with only unlabeled target data. Our intuition is that the outputs of a model on the target data provide clues for the model's actual performance in the target domain. DAPPER does not require expensive labeling costs nor involve additional training after deployment. Our evaluation with four real-world sensing datasets compared against four baselines shows that DAPPER outperforms the baselines by on average 17% in estimation accuracy. Moreover, our on-device experiment shows that DAPPER achieves up to 216X less computation overhead compared with the baselines.