Abstract:Electronic health record (EHR) systems contain a wealth of multimodal clinical data including structured data like clinical codes and unstructured data such as clinical notes. However, many existing EHR-focused studies has traditionally either concentrated on an individual modality or merged different modalities in a rather rudimentary fashion. This approach often results in the perception of structured and unstructured data as separate entities, neglecting the inherent synergy between them. Specifically, the two important modalities contain clinically relevant, inextricably linked and complementary health information. A more complete picture of a patient's medical history is captured by the joint analysis of the two modalities of data. Despite the great success of multimodal contrastive learning on vision-language, its potential remains under-explored in the realm of multimodal EHR, particularly in terms of its theoretical understanding. To accommodate the statistical analysis of multimodal EHR data, in this paper, we propose a novel multimodal feature embedding generative model and design a multimodal contrastive loss to obtain the multimodal EHR feature representation. Our theoretical analysis demonstrates the effectiveness of multimodal learning compared to single-modality learning and connects the solution of the loss function to the singular value decomposition of a pointwise mutual information matrix. This connection paves the way for a privacy-preserving algorithm tailored for multimodal EHR feature representation learning. Simulation studies show that the proposed algorithm performs well under a variety of configurations. We further validate the clinical utility of the proposed algorithm in real-world EHR data.
Abstract:The effective analysis of high-dimensional Electronic Health Record (EHR) data, with substantial potential for healthcare research, presents notable methodological challenges. Employing predictive modeling guided by a knowledge graph (KG), which enables efficient feature selection, can enhance both statistical efficiency and interpretability. While various methods have emerged for constructing KGs, existing techniques often lack statistical certainty concerning the presence of links between entities, especially in scenarios where the utilization of patient-level EHR data is limited due to privacy concerns. In this paper, we propose the first inferential framework for deriving a sparse KG with statistical guarantee based on the dynamic log-linear topic model proposed by \cite{arora2016latent}. Within this model, the KG embeddings are estimated by performing singular value decomposition on the empirical pointwise mutual information matrix, offering a scalable solution. We then establish entrywise asymptotic normality for the KG low-rank estimator, enabling the recovery of sparse graph edges with controlled type I error. Our work uniquely addresses the under-explored domain of statistical inference about non-linear statistics under the low-rank temporal dependent models, a critical gap in existing research. We validate our approach through extensive simulation studies and then apply the method to real-world EHR data in constructing clinical KGs and generating clinical feature embeddings.
Abstract:Electronic health records (EHR) contain narrative notes that provide extensive details on the medical condition and management of patients. Natural language processing (NLP) of clinical notes can use observed frequencies of clinical terms as predictive features for downstream applications such as clinical decision making and patient trajectory prediction. However, due to the vast number of highly similar and related clinical concepts, a more effective modeling strategy is to represent clinical terms as semantic embeddings via representation learning and use the low dimensional embeddings as feature vectors for predictive modeling. To achieve efficient representation, fine-tuning pretrained language models with biomedical knowledge graphs may generate better embeddings for biomedical terms than those from standard language models alone. These embeddings can effectively discriminate synonymous pairs of from those that are unrelated. However, they often fail to capture different degrees of similarity or relatedness for concepts that are hierarchical in nature. To overcome this limitation, we propose HiPrBERT, a novel biomedical term representation model trained on additionally complied data that contains hierarchical structures for various biomedical terms. We modify an existing contrastive loss function to extract information from these hierarchies. Our numerical experiments demonstrate that HiPrBERT effectively learns the pair-wise distance from hierarchical information, resulting in a substantially more informative embeddings for further biomedical applications
Abstract:Network analysis has been a powerful tool to unveil relationships and interactions among a large number of objects. Yet its effectiveness in accurately identifying important node-node interactions is challenged by the rapidly growing network size, with data being collected at an unprecedented granularity and scale. Common wisdom to overcome such high dimensionality is collapsing nodes into smaller groups and conducting connectivity analysis on the group level. Dividing efforts into two phases inevitably opens a gap in consistency and drives down efficiency. Consensus learning emerges as a new normal for common knowledge discovery with multiple data sources available. To this end, this paper features developing a unified framework of simultaneous grouping and connectivity analysis by combining multiple data sources. The algorithm also guarantees a statistically optimal estimator.
Abstract:Evidence-based or data-driven dynamic treatment regimes are essential for personalized medicine, which can benefit from offline reinforcement learning (RL). Although massive healthcare data are available across medical institutions, they are prohibited from sharing due to privacy constraints. Besides, heterogeneity exists in different sites. As a result, federated offline RL algorithms are necessary and promising to deal with the problems. In this paper, we propose a multi-site Markov decision process model which allows both homogeneous and heterogeneous effects across sites. The proposed model makes the analysis of the site-level features possible. We design the first federated policy optimization algorithm for offline RL with sample complexity. The proposed algorithm is communication-efficient and privacy-preserving, which requires only a single round of communication interaction by exchanging summary statistics. We give a theoretical guarantee for the proposed algorithm without the assumption of sufficient action coverage, where the suboptimality for the learned policies is comparable to the rate as if data is not distributed. Extensive simulations demonstrate the effectiveness of the proposed algorithm. The method is applied to a sepsis data set in multiple sites to illustrate its use in clinical settings.
Abstract:Matrix completion has attracted a lot of attention in many fields including statistics, applied mathematics and electrical engineering. Most of works focus on the independent sampling models under which the individual observed entries are sampled independently. Motivated by applications in the integration of multiple (point-wise mutual information) PMI matrices, we propose the model {\bf B}lockwise missing {\bf E}mbedding {\bf L}earning {\bf T}ransformer (BELT) to treat row-wise/column-wise missingness. Specifically, our proposed method aims at efficient matrix recovery when every pair of matrices from multiple sources has an overlap. We provide theoretical justification for the proposed BELT method. Simulation studies show that the method performs well in finite sample under a variety of configurations. The method is applied to integrate several PMI matrices built by EHR data and Chinese medical text data, which enables us to construct a comprehensive embedding set for CUI and Chinese with high quality.