Abstract:The adoption of EHRs has expanded opportunities to leverage data-driven algorithms in clinical care and research. A major bottleneck in effectively conducting multi-institutional EHR studies is the data heterogeneity across systems with numerous codes that either do not exist or represent different clinical concepts across institutions. The need for data privacy further limits the feasibility of including multi-institutional patient-level data required to study similarities and differences across patient subgroups. To address these challenges, we developed the GAME algorithm. Tested and validated across 7 institutions and 2 languages, GAME integrates data in several levels: (1) at the institutional level with knowledge graphs to establish relationships between codes and existing knowledge sources, providing the medical context for standard codes and their relationship to each other; (2) between institutions, leveraging language models to determine the relationships between institution-specific codes with established standard codes; and (3) quantifying the strength of the relationships between codes using a graph attention network. Jointly trained embeddings are created using transfer and federated learning to preserve data privacy. In this study, we demonstrate the applicability of GAME in selecting relevant features as inputs for AI-driven algorithms in a range of conditions, e.g., heart failure, rheumatoid arthritis. We then highlight the application of GAME harmonized multi-institutional EHR data in a study of Alzheimer's disease outcomes and suicide risk among patients with mental health disorders, without sharing patient-level data outside individual institutions.
Abstract:The effective analysis of high-dimensional Electronic Health Record (EHR) data, with substantial potential for healthcare research, presents notable methodological challenges. Employing predictive modeling guided by a knowledge graph (KG), which enables efficient feature selection, can enhance both statistical efficiency and interpretability. While various methods have emerged for constructing KGs, existing techniques often lack statistical certainty concerning the presence of links between entities, especially in scenarios where the utilization of patient-level EHR data is limited due to privacy concerns. In this paper, we propose the first inferential framework for deriving a sparse KG with statistical guarantee based on the dynamic log-linear topic model proposed by \cite{arora2016latent}. Within this model, the KG embeddings are estimated by performing singular value decomposition on the empirical pointwise mutual information matrix, offering a scalable solution. We then establish entrywise asymptotic normality for the KG low-rank estimator, enabling the recovery of sparse graph edges with controlled type I error. Our work uniquely addresses the under-explored domain of statistical inference about non-linear statistics under the low-rank temporal dependent models, a critical gap in existing research. We validate our approach through extensive simulation studies and then apply the method to real-world EHR data in constructing clinical KGs and generating clinical feature embeddings.