Network analysis has been a powerful tool to unveil relationships and interactions among a large number of objects. Yet its effectiveness in accurately identifying important node-node interactions is challenged by the rapidly growing network size, with data being collected at an unprecedented granularity and scale. Common wisdom to overcome such high dimensionality is collapsing nodes into smaller groups and conducting connectivity analysis on the group level. Dividing efforts into two phases inevitably opens a gap in consistency and drives down efficiency. Consensus learning emerges as a new normal for common knowledge discovery with multiple data sources available. To this end, this paper features developing a unified framework of simultaneous grouping and connectivity analysis by combining multiple data sources. The algorithm also guarantees a statistically optimal estimator.