Fiona
Abstract:Denoising Diffusion models have demonstrated their proficiency for generative sampling. However, generating good samples often requires many iterations. Consequently, techniques such as binary time-distillation (BTD) have been proposed to reduce the number of network calls for a fixed architecture. In this paper, we introduce TRAnsitive Closure Time-distillation (TRACT), a new method that extends BTD. For single step diffusion,TRACT improves FID by up to 2.4x on the same architecture, and achieves new single-step Denoising Diffusion Implicit Models (DDIM) state-of-the-art FID (7.4 for ImageNet64, 3.8 for CIFAR10). Finally we tease apart the method through extended ablations. The PyTorch implementation will be released soon.
Abstract:We extend semi-supervised learning to the problem of domain adaptation to learn significantly higher-accuracy models that train on one data distribution and test on a different one. With the goal of generality, we introduce AdaMatch, a method that unifies the tasks of unsupervised domain adaptation (UDA), semi-supervised learning (SSL), and semi-supervised domain adaptation (SSDA). In an extensive experimental study, we compare its behavior with respective state-of-the-art techniques from SSL, SSDA, and UDA on vision classification tasks. We find AdaMatch either matches or significantly exceeds the state-of-the-art in each case using the same hyper-parameters regardless of the dataset or task. For example, AdaMatch nearly doubles the accuracy compared to that of the prior state-of-the-art on the UDA task for DomainNet and even exceeds the accuracy of the prior state-of-the-art obtained with pre-training by 6.4% when AdaMatch is trained completely from scratch. Furthermore, by providing AdaMatch with just one labeled example per class from the target domain (i.e., the SSDA setting), we increase the target accuracy by an additional 6.1%, and with 5 labeled examples, by 13.6%.
Abstract:To respond to disasters such as earthquakes, wildfires, and armed conflicts, humanitarian organizations require accurate and timely data in the form of damage assessments, which indicate what buildings and population centers have been most affected. Recent research combines machine learning with remote sensing to automatically extract such information from satellite imagery, reducing manual labor and turn-around time. A major impediment to using machine learning methods in real disaster response scenarios is the difficulty of obtaining a sufficient amount of labeled data to train a model for an unfolding disaster. This paper shows a novel application of semi-supervised learning (SSL) to train models for damage assessment with a minimal amount of labeled data and large amount of unlabeled data. We compare the performance of state-of-the-art SSL methods, including MixMatch and FixMatch, to a supervised baseline for the 2010 Haiti earthquake, 2017 Santa Rosa wildfire, and 2016 armed conflict in Syria. We show how models trained with SSL methods can reach fully supervised performance despite using only a fraction of labeled data and identify areas for further improvements.
Abstract:Generating realistic images is difficult, and many formulations for this task have been proposed recently. If we restrict the task to that of generating a particular class of images, however, the task becomes more tractable. That is to say, instead of generating an arbitrary image as a sample from the manifold of natural images, we propose to sample images from a particular "subspace" of natural images, directed by a low-resolution image from the same subspace. The problem we address, while close to the formulation of the single-image super-resolution problem, is in fact rather different. Single image super-resolution is the task of predicting the image closest to the ground truth from a relatively low resolution image. We propose to produce samples of high resolution images given extremely small inputs with a new method called Latent Adversarial Generator (LAG). In our generative sampling framework, we only use the input (possibly of very low-resolution) to direct what class of samples the network should produce. As such, the output of our algorithm is not a unique image that relates to the input, but rather a possible se} of related images sampled from the manifold of natural images. Our method learns exclusively in the latent space of the adversary using perceptual loss -- it does not have a pixel loss.
Abstract:One promising approach to dealing with datapoints that are outside of the initial training distribution (OOD) is to create new classes that capture similarities in the datapoints previously rejected as uncategorizable. Systems that generate labels can be deployed against an arbitrary amount of data, discovering classification schemes that through training create a higher quality representation of data. We introduce the Dataset Reconstruction Accuracy, a new and important measure of the effectiveness of a model's ability to create labels. We introduce benchmarks against this Dataset Reconstruction metric. We apply a new heuristic, class learnability, for deciding whether a class is worthy of addition to the training dataset. We show that our class discovery system can be successfully applied to vision and language, and we demonstrate the value of semi-supervised learning in automatically discovering novel classes.
Abstract:Semi-supervised learning (SSL) provides an effective means of leveraging unlabeled data to improve a model's performance. In this paper, we demonstrate the power of a simple combination of two common SSL methods: consistency regularization and pseudo-labeling. Our algorithm, FixMatch, first generates pseudo-labels using the model's predictions on weakly-augmented unlabeled images. For a given image, the pseudo-label is only retained if the model produces a high-confidence prediction. The model is then trained to predict the pseudo-label when fed a strongly-augmented version of the same image. Despite its simplicity, we show that FixMatch achieves state-of-the-art performance across a variety of standard semi-supervised learning benchmarks, including 94.93% accuracy on CIFAR-10 with 250 labels and 88.61% accuracy with 40 -- just 4 labels per class. Since FixMatch bears many similarities to existing SSL methods that achieve worse performance, we carry out an extensive ablation study to tease apart the experimental factors that are most important to FixMatch's success. We make our code available at https://github.com/google-research/fixmatch.
Abstract:We propose using active learning based techniques to further improve the state-of-the-art semi-supervised learning MixMatch algorithm. We provide a thorough empirical evaluation of several active-learning and baseline methods, which successfully demonstrate a significant improvement on the benchmark CIFAR-10, CIFAR-100, and SVHN datasets (as much as 1.5% in absolute accuracy). We also provide an empirical analysis of the cost trade-off between incrementally gathering more labeled versus unlabeled data. This analysis can be used to measure the relative value of labeled/unlabeled data at different points of the learning curve, where we find that although the incremental value of labeled data can be as much as 20x that of unlabeled, it quickly diminishes to less than 3x once more than 2,000 labeled example are observed. Code can be found at https://github.com/google-research/mma.
Abstract:We improve the recently-proposed "MixMatch" semi-supervised learning algorithm by introducing two new techniques: distribution alignment and augmentation anchoring. Distribution alignment encourages the marginal distribution of predictions on unlabeled data to be close to the marginal distribution of ground-truth labels. Augmentation anchoring feeds multiple strongly augmented versions of an input into the model and encourages each output to be close to the prediction for a weakly-augmented version of the same input. To produce strong augmentations, we propose a variant of AutoAugment which learns the augmentation policy while the model is being trained. Our new algorithm, dubbed ReMixMatch, is significantly more data-efficient than prior work, requiring between $5\times$ and $16\times$ less data to reach the same accuracy. For example, on CIFAR-10 with 250 labeled examples we reach $93.73\%$ accuracy (compared to MixMatch's accuracy of $93.58\%$ with $4{,}000$ examples) and a median accuracy of $84.92\%$ with just four labels per class. We make our code and data open-source at https://github.com/google-research/remixmatch.
Abstract:Model extraction allows an adversary to steal a copy of a remotely deployed machine learning model given access to its predictions. Adversaries are motivated to mount such attacks for a variety of reasons, ranging from reducing their computational costs, to eliminating the need to collect expensive training data, to obtaining a copy of a model in order to find adversarial examples, perform membership inference, or model inversion attacks. In this paper, we taxonomize the space of model extraction attacks around two objectives: \emph{accuracy}, i.e., performing well on the underlying learning task, and \emph{fidelity}, i.e., matching the predictions of the remote victim classifier on any input. To extract a high-accuracy model, we develop a learning-based attack which exploits the victim to supervise the training of an extracted model. Through analytical and empirical arguments, we then explain the inherent limitations that prevent any learning-based strategy from extracting a truly high-fidelity model---i.e., extracting a functionally-equivalent model whose predictions are identical to those of the victim model on all possible inputs. Addressing these limitations, we expand on prior work to develop the first practical functionally-equivalent extraction attack for direct extraction (i.e., without training) of a model's weights. We perform experiments both on academic datasets and a state-of-the-art image classifier trained with 1 billion proprietary images. In addition to broadening the scope of model extraction research, our work demonstrates the practicality of model extraction attacks against production-grade systems.
Abstract:Semi-supervised learning has proven to be a powerful paradigm for leveraging unlabeled data to mitigate the reliance on large labeled datasets. In this work, we unify the current dominant approaches for semi-supervised learning to produce a new algorithm, MixMatch, that works by guessing low-entropy labels for data-augmented unlabeled examples and mixing labeled and unlabeled data using MixUp. We show that MixMatch obtains state-of-the-art results by a large margin across many datasets and labeled data amounts. For example, on CIFAR-10 with 250 labels, we reduce error rate by a factor of 4 (from 38% to 11%) and by a factor of 2 on STL-10. We also demonstrate how MixMatch can help achieve a dramatically better accuracy-privacy trade-off for differential privacy. Finally, we perform an ablation study to tease apart which components of MixMatch are most important for its success.