Topic:Multiple Instance Learning
What is Multiple Instance Learning? Multiple instance learning is a machine learning paradigm where training data is organized into bags of instances.
Papers and Code
Dec 29, 2024
Abstract:Multiple signal modalities, such as vision and sounds, are naturally present in real-world phenomena. Recently, there has been growing interest in learning generative models, in particular variational autoencoder (VAE), to for multimodal representation learning especially in the case of missing modalities. The primary goal of these models is to learn a modality-invariant and modality-specific representation that characterizes information across multiple modalities. Previous attempts at multimodal VAEs approach this mainly through the lens of experts, aggregating unimodal inference distributions with a product of experts (PoE), a mixture of experts (MoE), or a combination of both. In this paper, we provide an alternative generic and theoretical formulation of multimodal VAE through the lens of barycenter. We first show that PoE and MoE are specific instances of barycenters, derived by minimizing the asymmetric weighted KL divergence to unimodal inference distributions. Our novel formulation extends these two barycenters to a more flexible choice by considering different types of divergences. In particular, we explore the Wasserstein barycenter defined by the 2-Wasserstein distance, which better preserves the geometry of unimodal distributions by capturing both modality-specific and modality-invariant representations compared to KL divergence. Empirical studies on three multimodal benchmarks demonstrated the effectiveness of the proposed method.
* AAAI 2025
Via

Dec 13, 2024
Abstract:The number of categories of instances in the real world is normally huge, and each instance may contain multiple labels. To distinguish these massive labels utilizing machine learning, eXtreme Label Classification (XLC) has been established. However, as the number of categories increases, the number of parameters and nonlinear operations in the classifier also rises. This results in a Classifier Computational Overload Problem (CCOP). To address this, we propose a Multi-Head Encoding (MHE) mechanism, which replaces the vanilla classifier with a multi-head classifier. During the training process, MHE decomposes extreme labels into the product of multiple short local labels, with each head trained on these local labels. During testing, the predicted labels can be directly calculated from the local predictions of each head. This reduces the computational load geometrically. Then, according to the characteristics of different XLC tasks, e.g., single-label, multi-label, and model pretraining tasks, three MHE-based implementations, i.e., Multi-Head Product, Multi-Head Cascade, and Multi-Head Sampling, are proposed to more effectively cope with CCOP. Moreover, we theoretically demonstrate that MHE can achieve performance approximately equivalent to that of the vanilla classifier by generalizing the low-rank approximation problem from Frobenius-norm to Cross-Entropy. Experimental results show that the proposed methods achieve state-of-the-art performance while significantly streamlining the training and inference processes of XLC tasks. The source code has been made public at https://github.com/Anoise/MHE.
* 20 pages, 12 figs, Published in TPAMI
Via

Dec 17, 2024
Abstract:Link prediction in dynamic graphs (LPDG) has been widely applied to real-world applications such as website recommendation, traffic flow prediction, organizational studies, etc. These models are usually kept local and secure, with only the interactive interface restrictively available to the public. Thus, the problem of the black-box evasion attack on the LPDG model, where model interactions and data perturbations are restricted, seems to be essential and meaningful in practice. In this paper, we propose the first practicable black-box evasion attack method that achieves effective attacks against the target LPDG model, within a limited amount of interactions and perturbations. To perform effective attacks under limited perturbations, we develop a graph sequential embedding model to find the desired state embedding of the dynamic graph sequences, under a deep reinforcement learning framework. To overcome the scarcity of interactions, we design a multi-environment training pipeline and train our agent for multiple instances, by sharing an aggregate interaction buffer. Finally, we evaluate our attack against three advanced LPDG models on three real-world graph datasets of different scales and compare its performance with related methods under the interaction and perturbation constraints. Experimental results show that our attack is both effective and practicable.
Via

Dec 21, 2024
Abstract:The accuracy of deep neural networks is significantly influenced by the effectiveness of mini-batch construction during training. In single-label scenarios, such as binary and multi-class classification tasks, it has been demonstrated that batch selection algorithms preferring samples with higher uncertainty achieve better performance than difficulty-based methods. Although there are two batch selection methods tailored for multi-label data, none of them leverage important uncertainty information. Adapting the concept of uncertainty to multi-label data is not a trivial task, since there are two issues that should be tackled. First, traditional variance or entropy-based uncertainty measures ignore fluctuations of predictions within sliding windows and the importance of the current model state. Second, existing multi-label methods do not explicitly exploit the label correlations, particularly the uncertainty-based label correlations that evolve during the training process. In this paper, we propose an uncertainty-based multi-label batch selection algorithm. It assesses uncertainty for each label by considering differences between successive predictions and the confidence of current outputs, and further leverages dynamic uncertainty-based label correlations to emphasize instances whose uncertainty is synergistically expressed across multiple labels. Empirical studies demonstrate the effectiveness of our method in improving the performance and accelerating the convergence of various multi-label deep learning models.
Via

Jan 06, 2025
Abstract:Federated learning (FL) has attracted considerable interest in the medical domain due to its capacity to facilitate collaborative model training while maintaining data privacy. However, conventional FL methods typically necessitate multiple communication rounds, leading to significant communication overhead and delays, especially in environments with limited bandwidth. One-shot federated learning addresses these issues by conducting model training and aggregation in a single communication round, thereby reducing communication costs while preserving privacy. Among these, one-shot federated ensemble learning combines independently trained client models using ensemble techniques such as voting, further boosting performance in non-IID data scenarios. On the other hand, existing machine learning methods in healthcare predominantly use unimodal data (e.g., medical images or textual reports), which restricts their diagnostic accuracy and comprehensiveness. Therefore, the integration of multi-modal data is proposed to address these shortcomings. In this paper, we introduce FedMME, an innovative one-shot multi-modal federated ensemble learning framework that utilizes multi-modal data for medical image analysis. Specifically, FedMME capitalizes on vision large language models to produce textual reports from medical images, employs a BERT model to extract textual features from these reports, and amalgamates these features with visual features to improve diagnostic accuracy. Experimental results show that our method demonstrated superior performance compared to existing one-shot federated learning methods in healthcare scenarios across four datasets with various data distributions. For instance, it surpasses existing one-shot federated learning approaches by more than 17.5% in accuracy on the RSNA dataset when applying a Dirichlet distribution with ($\alpha$ = 0.3).
Via

Nov 16, 2024
Abstract:Advances in optical microscopy scanning have significantly contributed to computational pathology (CPath) by converting traditional histopathological slides into whole slide images (WSIs). This development enables comprehensive digital reviews by pathologists and accelerates AI-driven diagnostic support for WSI analysis. Recent advances in foundational pathology models have increased the need for benchmarking tasks. The Camelyon series is one of the most widely used open-source datasets in computational pathology. However, the quality, accessibility, and clinical relevance of the labels have not been comprehensively evaluated. In this study, we reprocessed 1,399 WSIs and labels from the Camelyon-16 and Camelyon-17 datasets, removing low-quality slides, correcting erroneous labels, and providing expert pixel annotations for tumor regions in the previously unreleased test set. Based on the sizes of re-annotated tumor regions, we upgraded the binary cancer screening task to a four-class task: negative, micro-metastasis, macro-metastasis, and Isolated Tumor Cells (ITC). We reevaluated pre-trained pathology feature extractors and multiple instance learning (MIL) methods using the cleaned dataset, providing a benchmark that advances AI development in histopathology.
Via

Nov 13, 2024
Abstract:The widespread implementation of urban surveillance systems has necessitated more sophisticated techniques for anomaly detection to ensure enhanced public safety. This paper presents a significant advancement in the field of anomaly detection through the application of Two-Stream Inflated 3D (I3D) Convolutional Networks. These networks substantially outperform traditional 3D Convolutional Networks (C3D) by more effectively extracting spatial and temporal features from surveillance videos, thus improving the precision of anomaly detection. Our research advances the field by implementing a weakly supervised learning framework based on Multiple Instance Learning (MIL), which uniquely conceptualizes surveillance videos as collections of 'bags' that contain instances (video clips). Each instance is innovatively processed through a ranking mechanism that prioritizes clips based on their potential to display anomalies. This novel strategy not only enhances the accuracy and precision of anomaly detection but also significantly diminishes the dependency on extensive manual annotations. Moreover, through meticulous optimization of model settings, including the choice of optimizer, our approach not only establishes new benchmarks in the performance of anomaly detection systems but also offers a scalable and efficient solution for real-world surveillance applications. This paper contributes significantly to the field of computer vision by delivering a more adaptable, efficient, and context-aware anomaly detection system, which is poised to redefine practices in urban surveillance.
* 11 pages, 8 figures
Via

Nov 15, 2024
Abstract:The task of partial scene text retrieval involves localizing and searching for text instances that are the same or similar to a given query text from an image gallery. However, existing methods can only handle text-line instances, leaving the problem of searching for partial patches within these text-line instances unsolved due to a lack of patch annotations in the training data. To address this issue, we propose a network that can simultaneously retrieve both text-line instances and their partial patches. Our method embeds the two types of data (query text and scene text instances) into a shared feature space and measures their cross-modal similarities. To handle partial patches, our proposed approach adopts a Multiple Instance Learning (MIL) approach to learn their similarities with query text, without requiring extra annotations. However, constructing bags, which is a standard step of conventional MIL approaches, can introduce numerous noisy samples for training, and lower inference speed. To address this issue, we propose a Ranking MIL (RankMIL) approach to adaptively filter those noisy samples. Additionally, we present a Dynamic Partial Match Algorithm (DPMA) that can directly search for the target partial patch from a text-line instance during the inference stage, without requiring bags. This greatly improves the search efficiency and the performance of retrieving partial patches. The source code and dataset are available at https://github.com/lanfeng4659/PSTR.
* Accepted on TPAMI
Via

Nov 13, 2024
Abstract:Associative memory models, such as Hopfield networks and their modern variants, have garnered renewed interest due to advancements in memory capacity and connections with self-attention in transformers. In this work, we introduce a unified framework-Hopfield-Fenchel-Young networks-which generalizes these models to a broader family of energy functions. Our energies are formulated as the difference between two Fenchel-Young losses: one, parameterized by a generalized entropy, defines the Hopfield scoring mechanism, while the other applies a post-transformation to the Hopfield output. By utilizing Tsallis and norm entropies, we derive end-to-end differentiable update rules that enable sparse transformations, uncovering new connections between loss margins, sparsity, and exact retrieval of single memory patterns. We further extend this framework to structured Hopfield networks using the SparseMAP transformation, allowing the retrieval of pattern associations rather than a single pattern. Our framework unifies and extends traditional and modern Hopfield networks and provides an energy minimization perspective for widely used post-transformations like $\ell_2$-normalization and layer normalization-all through suitable choices of Fenchel-Young losses and by using convex analysis as a building block. Finally, we validate our Hopfield-Fenchel-Young networks on diverse memory recall tasks, including free and sequential recall. Experiments on simulated data, image retrieval, multiple instance learning, and text rationalization demonstrate the effectiveness of our approach.
* 49 pages, 14 figures. arXiv admin note: text overlap with
arXiv:2402.13725
Via

Nov 14, 2024
Abstract:Neoadjuvant chemotherapy (NAC) response prediction for triple negative breast cancer (TNBC) patients is a challenging task clinically as it requires understanding complex histology interactions within the tumor microenvironment (TME). Digital whole slide images (WSIs) capture detailed tissue information, but their giga-pixel size necessitates computational methods based on multiple instance learning, which typically analyze small, isolated image tiles without the spatial context of the TME. To address this limitation and incorporate TME spatial histology interactions in predicting NAC response for TNBC patients, we developed a histology context-aware transformer graph convolution network (NACNet). Our deep learning method identifies the histopathological labels on individual image tiles from WSIs, constructs a spatial TME graph, and represents each node with features derived from tissue texture and social network analysis. It predicts NAC response using a transformer graph convolution network model enhanced with graph isomorphism network layers. We evaluate our method with WSIs of a cohort of TNBC patient (N=105) and compared its performance with multiple state-of-the-art machine learning and deep learning models, including both graph and non-graph approaches. Our NACNet achieves 90.0% accuracy, 96.0% sensitivity, 88.0% specificity, and an AUC of 0.82, through eight-fold cross-validation, outperforming baseline models. These comprehensive experimental results suggest that NACNet holds strong potential for stratifying TNBC patients by NAC response, thereby helping to prevent overtreatment, improve patient quality of life, reduce treatment cost, and enhance clinical outcomes, marking an important advancement toward personalized breast cancer treatment.
* This paper is accepted by Computerized Medical Imaging and Graphics
(Nov 07 2024)
Via
