Abstract:Traditional regression and prediction tasks often only provide deterministic point estimates. To estimate the uncertainty or distribution information of the response variable, methods such as Bayesian inference, model ensembling, or MC Dropout are typically used. These methods either assume that the posterior distribution of samples follows a Gaussian process or require thousands of forward passes for sample generation. We propose a novel approach called DistPred for regression and forecasting tasks, which overcomes the limitations of existing methods while remaining simple and powerful. Specifically, we transform proper scoring rules that measure the discrepancy between the predicted distribution and the target distribution into a differentiable discrete form and use it as a loss function to train the model end-to-end. This allows the model to sample numerous samples in a single forward pass to estimate the potential distribution of the response variable. We have compared our method with several existing approaches on multiple datasets and achieved state-of-the-art performance. Additionally, our method significantly improves computational efficiency. For example, compared to state-of-the-art models, DistPred has a 90x faster inference speed. Experimental results can be reproduced through https://github.com/Anoise/DistPred.
Abstract:In this paper, we find that ubiquitous time series (TS) forecasting models are prone to severe overfitting. To cope with this problem, we embrace a de-redundancy approach to progressively reinstate the intrinsic values of TS for future intervals. Specifically, we renovate the vanilla Transformer by reorienting the information aggregation mechanism from addition to subtraction. Then, we incorporate an auxiliary output branch into each block of the original model to construct a highway leading to the ultimate prediction. The output of subsequent modules in this branch will subtract the previously learned results, enabling the model to learn the residuals of the supervision signal, layer by layer. This designing facilitates the learning-driven implicit progressive decomposition of the input and output streams, empowering the model with heightened versatility, interpretability, and resilience against overfitting. Since all aggregations in the model are minus signs, which is called Minusformer. Extensive experiments demonstrate the proposed method outperform existing state-of-the-art methods, yielding an average performance improvement of 11.9% across various datasets.
Abstract:As Transformer-based models have achieved impressive performance on various time series tasks, Long-Term Series Forecasting (LTSF) tasks have also received extensive attention in recent years. However, due to the inherent computational complexity and long sequences demanding of Transformer-based methods, its application on LTSF tasks still has two major issues that need to be further investigated: 1) Whether the sparse attention mechanism designed by these methods actually reduce the running time on real devices; 2) Whether these models need extra long input sequences to guarantee their performance? The answers given in this paper are negative. Therefore, to better copy with these two issues, we design a lightweight Period-Attention mechanism (Periodformer), which renovates the aggregation of long-term subseries via explicit periodicity and short-term subseries via built-in proximity. Meanwhile, a gating mechanism is embedded into Periodformer to regulate the influence of the attention module on the prediction results. Furthermore, to take full advantage of GPUs for fast hyperparameter optimization (e.g., finding the suitable input length), a Multi-GPU Asynchronous parallel algorithm based on Bayesian Optimization (MABO) is presented. MABO allocates a process to each GPU via a queue mechanism, and then creates multiple trials at a time for asynchronous parallel search, which greatly reduces the search time. Compared with the state-of-the-art methods, the prediction error of Periodformer reduced by 13% and 26% for multivariate and univariate forecasting, respectively. In addition, MABO reduces the average search time by 46% while finding better hyperparameters. As a conclusion, this paper indicates that LTSF may not need complex attention and extra long input sequences. The code has been open sourced on Github.