Xi'an, Shaanxi, China
Abstract:Logical fallacy uses invalid or faulty reasoning in the construction of a statement. Despite the prevalence and harmfulness of logical fallacies, detecting and classifying logical fallacies still remains a challenging task. We observe that logical fallacies often use connective words to indicate an intended logical relation between two arguments, while the argument semantics does not actually support the logical relation. Inspired by this observation, we propose to build a logical structure tree to explicitly represent and track the hierarchical logic flow among relation connectives and their arguments in a statement. Specifically, this logical structure tree is constructed in an unsupervised manner guided by the constituency tree and a taxonomy of connectives for ten common logical relations, with relation connectives as non-terminal nodes and textual arguments as terminal nodes, and the latter are mostly elementary discourse units. We further develop two strategies to incorporate the logical structure tree into LLMs for fallacy reasoning. Firstly, we transform the tree into natural language descriptions and feed the textualized tree into LLMs as a part of the hard text prompt. Secondly, we derive a relation-aware tree embedding and insert the tree embedding into LLMs as a soft prompt. Experiments on benchmark datasets demonstrate that our approach based on logical structure tree significantly improves precision and recall for both fallacy detection and fallacy classification.
Abstract:Large Language Models (LLMs) have shown remarkable capabilities in a multitude of Natural Language Processing (NLP) tasks. However, these models are still not immune to limitations such as social biases, especially gender bias. This work investigates whether current closed and open-source LLMs possess gender bias, especially when asked to give moral opinions. To evaluate these models, we curate and introduce a new dataset GenMO (Gender-bias in Morality Opinions) comprising parallel short stories featuring male and female characters respectively. Specifically, we test models from the GPT family (GPT-3.5-turbo, GPT-3.5-turbo-instruct, GPT-4-turbo), Llama 3 and 3.1 families (8B/70B), Mistral-7B and Claude 3 families (Sonnet and Opus). Surprisingly, despite employing safety checks, all production-standard models we tested display significant gender bias with GPT-3.5-turbo giving biased opinions in 24% of the samples. Additionally, all models consistently favour female characters, with GPT showing bias in 68-85% of cases and Llama 3 in around 81-85% instances. Additionally, our study investigates the impact of model parameters on gender bias and explores real-world situations where LLMs reveal biases in moral decision-making.
Abstract:Most previous research on moral frames has focused on social media short texts, little work has explored moral sentiment within news articles. In news articles, authors often express their opinions or political stance through moral judgment towards events, specifically whether the event is right or wrong according to social moral rules. This paper initiates a new task to understand moral opinions towards events in news articles. We have created a new dataset, EMONA, and annotated event-level moral opinions in news articles. This dataset consists of 400 news articles containing over 10k sentences and 45k events, among which 9,613 events received moral foundation labels. Extracting event morality is a challenging task, as moral judgment towards events can be very implicit. Baseline models were built for event moral identification and classification. In addition, we also conduct extrinsic evaluations to integrate event-level moral opinions into three downstream tasks. The statistical analysis and experiments show that moral opinions of events can serve as informative features for identifying ideological bias or subjective events.
Abstract:Media outlets are becoming more partisan and polarized nowadays. In this paper, we identify media bias at the sentence level, and pinpoint bias sentences that intend to sway readers' opinions. As bias sentences are often expressed in a neutral and factual way, considering broader context outside a sentence can help reveal the bias. In particular, we observe that events in a bias sentence need to be understood in associations with other events in the document. Therefore, we propose to construct an event relation graph to explicitly reason about event-event relations for sentence-level bias identification. The designed event relation graph consists of events as nodes and four common types of event relations: coreference, temporal, causal, and subevent relations. Then, we incorporate event relation graph for bias sentences identification in two steps: an event-aware language model is built to inject the events and event relations knowledge into the basic language model via soft labels; further, a relation-aware graph attention network is designed to update sentence embedding with events and event relations information based on hard labels. Experiments on two benchmark datasets demonstrate that our approach with the aid of event relation graph improves both precision and recall of bias sentence identification.
Abstract:Opinion summarization is automatically generating summaries from a variety of subjective information, such as product reviews or political opinions. The challenge of opinions summarization lies in presenting divergent or even conflicting opinions. We conduct an analysis of previous summarization models, which reveals their inclination to amplify the polarity bias, emphasizing the majority opinions while ignoring the minority opinions. To address this issue and make the summarizer express both sides of opinions, we introduce the concept of polarity calibration, which aims to align the polarity of output summary with that of input text. Specifically, we develop a reinforcement training approach for polarity calibration. This approach feeds the polarity distance between output summary and input text as reward into the summarizer, and also balance polarity calibration with content preservation and language naturality. We evaluate our Polarity Calibration model (PoCa) on two types of opinions summarization tasks: summarizing product reviews and political opinions articles. Automatic and human evaluation demonstrate that our approach can mitigate the polarity mismatch between output summary and input text, as well as maintain the content semantic and language quality.
Abstract:Conspiracy theories, as a type of misinformation, are narratives that explains an event or situation in an irrational or malicious manner. While most previous work examined conspiracy theory in social media short texts, limited attention was put on such misinformation in long news documents. In this paper, we aim to identify whether a news article contains conspiracy theories. We observe that a conspiracy story can be made up by mixing uncorrelated events together, or by presenting an unusual distribution of relations between events. Achieving a contextualized understanding of events in a story is essential for detecting conspiracy theories. Thus, we propose to incorporate an event relation graph for each article, in which events are nodes, and four common types of event relations, coreference, temporal, causal, and subevent relations, are considered as edges. Then, we integrate the event relation graph into conspiracy theory identification in two ways: an event-aware language model is developed to augment the basic language model with the knowledge of events and event relations via soft labels; further, a heterogeneous graph attention network is designed to derive a graph embedding based on hard labels. Experiments on a large benchmark dataset show that our approach based on event relation graph improves both precision and recall of conspiracy theory identification, and generalizes well for new unseen media sources.
Abstract:Propaganda is a form of deceptive narratives that instigate or mislead the public, usually with a political purpose. In this paper, we aim to identify propaganda in political news at two fine-grained levels: sentence-level and token-level. We observe that propaganda content is more likely to be embedded in sentences that attribute causality or assert contrast to nearby sentences, as well as seen in opinionated evaluation, speculation and discussions of future expectation. Hence, we propose to incorporate both local and global discourse structures for propaganda discovery and construct two teacher models for identifying PDTB-style discourse relations between nearby sentences and common discourse roles of sentences in a news article respectively. We further devise two methods to incorporate the two types of discourse structures for propaganda identification by either using teacher predicted probabilities as additional features or soliciting guidance in a knowledge distillation framework. Experiments on the benchmark dataset demonstrate that leveraging guidance from discourse structures can significantly improve both precision and recall of propaganda content identification.
Abstract:The recent proposed orthogonal time frequency space (OTFS) modulation shows signifcant advantages than conventional orthogonal frequency division multiplexing (OFDM) for high mobility wireless communications. However, a challenging problem is the development of effcient receivers for practical OTFS systems with low complexity. In this paper, we propose a novel delay-Doppler reversal (DDR) technology for OTFS system with desired performance and low complexity. We present the DDR technology from a perspective of two-dimensional cascaded channel model, analyze its computational complexity and also analyze its performance gain compared to the direct processing (DP) receiver without DDR. Simulation results demonstrate that our proposed DDR receiver outperforms traditional receivers in doubly-selective fading channels.
Abstract:Edge caching will play a critical role in facilitating the emerging content-rich applications. However, it faces many new challenges, in particular, the highly dynamic content popularity and the heterogeneous caching configurations. In this paper, we propose Cocktail Edge Caching, that tackles the dynamic popularity and heterogeneity through ensemble learning. Instead of trying to find a single dominating caching policy for all the caching scenarios, we employ an ensemble of constituent caching policies and adaptively select the best-performing policy to control the cache. Towards this goal, we first show through formal analysis and experiments that different variations of the LFU and LRU policies have complementary performance in different caching scenarios. We further develop a novel caching algorithm that enhances LFU/LRU with deep recurrent neural network (LSTM) based time-series analysis. Finally, we develop a deep reinforcement learning agent that adaptively combines base caching policies according to their virtual hit ratios on parallel virtual caches. Through extensive experiments driven by real content requests from two large video streaming platforms, we demonstrate that CEC not only consistently outperforms all single policies, but also improves the robustness of them. CEC can be well generalized to different caching scenarios with low computation overheads for deployment.