Topic:Video Super Resolution
What is Video Super Resolution? Video super-resolution is a computer-vision task that aims to increase the resolution of a video sequence, typically from lower to higher resolutions. The goal is to generate high-resolution video frames from low-resolution input, improving the overall quality of the video.
Papers and Code
Apr 22, 2025
Abstract:As a fundamental challenge in visual computing, video super-resolution (VSR) focuses on reconstructing highdefinition video sequences from their degraded lowresolution counterparts. While deep convolutional neural networks have demonstrated state-of-the-art performance in spatial-temporal super-resolution tasks, their computationally intensive nature poses significant deployment challenges for resource-constrained edge devices, particularly in real-time mobile video processing scenarios where power efficiency and latency constraints coexist. In this work, we propose a Reparameterizable Architecture for High Fidelity Video Super Resolution method, named RepNet-VSR, for real-time 4x video super-resolution. On the REDS validation set, the proposed model achieves 27.79 dB PSNR when processing 180p to 720p frames in 103 ms per 10 frames on a MediaTek Dimensity NPU. The competition results demonstrate an excellent balance between restoration quality and deployment efficiency. The proposed method scores higher than the previous champion algorithm of MAI video super-resolution challenge.
* Champion Solution for CVPR 2025 MAI VSR Track
Via

Apr 22, 2025
Abstract:Recent advances in diffusion models have revolutionized video generation, offering superior temporal consistency and visual quality compared to traditional generative adversarial networks-based approaches. While this emerging field shows tremendous promise in applications, it faces significant challenges in motion consistency, computational efficiency, and ethical considerations. This survey provides a comprehensive review of diffusion-based video generation, examining its evolution, technical foundations, and practical applications. We present a systematic taxonomy of current methodologies, analyze architectural innovations and optimization strategies, and investigate applications across low-level vision tasks such as denoising and super-resolution. Additionally, we explore the synergies between diffusionbased video generation and related domains, including video representation learning, question answering, and retrieval. Compared to the existing surveys (Lei et al., 2024a;b; Melnik et al., 2024; Cao et al., 2023; Xing et al., 2024c) which focus on specific aspects of video generation, such as human video synthesis (Lei et al., 2024a) or long-form content generation (Lei et al., 2024b), our work provides a broader, more updated, and more fine-grained perspective on diffusion-based approaches with a special section for evaluation metrics, industry solutions, and training engineering techniques in video generation. This survey serves as a foundational resource for researchers and practitioners working at the intersection of diffusion models and video generation, providing insights into both the theoretical frameworks and practical implementations that drive this rapidly evolving field. A structured list of related works involved in this survey is also available on https://github.com/Eyeline-Research/Survey-Video-Diffusion.
Via

Apr 21, 2025
Abstract:In this work, we build the first benchmark dataset for short-form UGC Image Super-resolution in the wild, termed KwaiSR, intending to advance the research on developing image super-resolution algorithms for short-form UGC platforms. This dataset is collected from the Kwai Platform, which is composed of two parts, i.e., synthetic and wild parts. Among them, the synthetic dataset, including 1,900 image pairs, is produced by simulating the degradation following the distribution of real-world low-quality short-form UGC images, aiming to provide the ground truth for training and objective comparison in the validation/testing. The wild dataset contains low-quality images collected directly from the Kwai Platform, which are filtered using the quality assessment method KVQ from the Kwai Platform. As a result, the KwaiSR dataset contains 1800 synthetic image pairs and 1900 wild images, which are divided into training, validation, and testing parts with a ratio of 8:1:1. Based on the KwaiSR dataset, we organize the NTIRE 2025 challenge on a second short-form UGC Video quality assessment and enhancement, which attracts lots of researchers to develop the algorithm for it. The results of this competition have revealed that our KwaiSR dataset is pretty challenging for existing Image SR methods, which is expected to lead to a new direction in the image super-resolution field. The dataset can be found from https://lixinustc.github.io/NTIRE2025-KVQE-KwaSR-KVQ.github.io/.
* KwaiSR dataset, a new dataset for image super-resolution, used for
CVPR NTIRE 2025 Challenge; CVPR 2025 workshop paper
Via

Apr 18, 2025
Abstract:In this paper, we tackle the task of blurry video super-resolution (BVSR), aiming to generate high-resolution (HR) videos from low-resolution (LR) and blurry inputs. Current BVSR methods often fail to restore sharp details at high resolutions, resulting in noticeable artifacts and jitter due to insufficient motion information for deconvolution and the lack of high-frequency details in LR frames. To address these challenges, we introduce event signals into BVSR and propose a novel event-enhanced network, Ev-DeblurVSR. To effectively fuse information from frames and events for feature deblurring, we introduce a reciprocal feature deblurring module that leverages motion information from intra-frame events to deblur frame features while reciprocally using global scene context from the frames to enhance event features. Furthermore, to enhance temporal consistency, we propose a hybrid deformable alignment module that fully exploits the complementary motion information from inter-frame events and optical flow to improve motion estimation in the deformable alignment process. Extensive evaluations demonstrate that Ev-DeblurVSR establishes a new state-of-the-art performance on both synthetic and real-world datasets. Notably, on real data, our method is +2.59 dB more accurate and 7.28$\times$ faster than the recent best BVSR baseline FMA-Net. Code: https://github.com/DachunKai/Ev-DeblurVSR.
Via

Apr 10, 2025
Abstract:Events offer a novel paradigm for capturing scene dynamics via asynchronous sensing, but their inherent randomness often leads to degraded signal quality. Event signal filtering is thus essential for enhancing fidelity by reducing this internal randomness and ensuring consistent outputs across diverse acquisition conditions. Unlike traditional time series that rely on fixed temporal sampling to capture steady-state behaviors, events encode transient dynamics through polarity and event intervals, making signal modeling significantly more complex. To address this, the theoretical foundation of event generation is revisited through the lens of diffusion processes. The state and process information within events is modeled as continuous probability flux at threshold boundaries of the underlying irradiance diffusion. Building on this insight, a generative, online filtering framework called Event Density Flow Filter (EDFilter) is introduced. EDFilter estimates event correlation by reconstructing the continuous probability flux from discrete events using nonparametric kernel smoothing, and then resamples filtered events from this flux. To optimize fidelity over time, spatial and temporal kernels are employed in a time-varying optimization framework. A fast recursive solver with O(1) complexity is proposed, leveraging state-space models and lookup tables for efficient likelihood computation. Furthermore, a new real-world benchmark Rotary Event Dataset (RED) is released, offering microsecond-level ground truth irradiance for full-reference event filtering evaluation. Extensive experiments validate EDFilter's performance across tasks like event filtering, super-resolution, and direct event-based blob tracking. Significant gains in downstream applications such as SLAM and video reconstruction underscore its robustness and effectiveness.
Via

Apr 07, 2025
Abstract:In this work, we propose a new diffusion-based method for video frame interpolation (VFI), in the context of traditional hand-made animation. We introduce three main contributions: The first is that we explicitly handle the interpolation time in our model, which we also re-estimate during the training process, to cope with the particularly large variations observed in the animation domain, compared to natural videos; The second is that we adapt and generalize a diffusion scheme called ResShift recently proposed in the super-resolution community to VFI, which allows us to perform a very low number of diffusion steps (in the order of 10) to produce our estimates; The third is that we leverage the stochastic nature of the diffusion process to provide a pixel-wise estimate of the uncertainty on the interpolated frame, which could be useful to anticipate where the model may be wrong. We provide extensive comparisons with respect to state-of-the-art models and show that our model outperforms these models on animation videos.
* 17 pages
Via

Apr 07, 2025
Abstract:Anomalous diffusion occurs in a wide range of systems, including protein transport within cells, animal movement in complex habitats, pollutant dispersion in groundwater, and nanoparticle motion in synthetic materials. Accurately estimating the anomalous diffusion exponent and the diffusion coefficient from the particle trajectories is essential to distinguish between sub-diffusive, super-diffusive, or normal diffusion regimes. These estimates provide a deeper insight into the underlying dynamics of the system, facilitating the identification of particle behaviors and the detection of changes in diffusion states. However, analyzing short and noisy video data, which often yield incomplete and heterogeneous trajectories, poses a significant challenge for traditional statistical approaches. We introduce a data-driven method that integrates particle tracking, an attention U-Net architecture, and a change-point detection algorithm to address these issues. This approach not only infers the anomalous diffusion parameters with high accuracy but also identifies temporal transitions between different states, even in the presence of noise and limited temporal resolution. Our methodology demonstrated strong performance in the 2nd Anomalous Diffusion (AnDi) Challenge benchmark within the top submissions for video tasks.
* 20 pages, 9 figures
Via

Mar 17, 2025
Abstract:Video Super-Resolution (VSR) reconstructs high-resolution videos from low-resolution inputs to restore fine details and improve visual clarity. While deep learning-based VSR methods achieve impressive results, their centralized nature raises serious privacy concerns, particularly in applications with strict privacy requirements. Federated Learning (FL) offers an alternative approach, but existing FL methods struggle with low-level vision tasks, leading to suboptimal reconstructions. To address this, we propose FedVSR1, a novel, architecture-independent, and stateless FL framework for VSR. Our approach introduces a lightweight loss term that improves local optimization and guides global aggregation with minimal computational overhead. To the best of our knowledge, this is the first attempt at federated VSR. Extensive experiments show that FedVSR outperforms general FL methods by an average of 0.85 dB in PSNR, highlighting its effectiveness. The code is available at: https://github.com/alimd94/FedVSR
Via

Mar 10, 2025
Abstract:Blind video super-resolution (BVSR) is a low-level vision task which aims to generate high-resolution videos from low-resolution counterparts in unknown degradation scenarios. Existing approaches typically predict blur kernels that are spatially invariant in each video frame or even the entire video. These methods do not consider potential spatio-temporal varying degradations in videos, resulting in suboptimal BVSR performance. In this context, we propose a novel BVSR model based on Implicit Kernels, BVSR-IK, which constructs a multi-scale kernel dictionary parameterized by implicit neural representations. It also employs a newly designed recurrent Transformer to predict the coefficient weights for accurate filtering in both frame correction and feature alignment. Experimental results have demonstrated the effectiveness of the proposed BVSR-IK, when compared with four state-of-the-art BVSR models on three commonly used datasets, with BVSR-IK outperforming the second best approach, FMA-Net, by up to 0.59 dB in PSNR. Source code will be available at https://github.com.
Via

Mar 18, 2025
Abstract:The computer vision community has developed numerous techniques for digitally restoring true scene information from single-view degraded photographs, an important yet extremely ill-posed task. In this work, we tackle image restoration from a different perspective by jointly denoising multiple photographs of the same scene. Our core hypothesis is that degraded images capturing a shared scene contain complementary information that, when combined, better constrains the restoration problem. To this end, we implement a powerful multi-view diffusion model that jointly generates uncorrupted views by extracting rich information from multi-view relationships. Our experiments show that our multi-view approach outperforms existing single-view image and even video-based methods on image deblurring and super-resolution tasks. Critically, our model is trained to output 3D consistent images, making it a promising tool for applications requiring robust multi-view integration, such as 3D reconstruction or pose estimation.
Via
