Abstract:Anomalous diffusion occurs in a wide range of systems, including protein transport within cells, animal movement in complex habitats, pollutant dispersion in groundwater, and nanoparticle motion in synthetic materials. Accurately estimating the anomalous diffusion exponent and the diffusion coefficient from the particle trajectories is essential to distinguish between sub-diffusive, super-diffusive, or normal diffusion regimes. These estimates provide a deeper insight into the underlying dynamics of the system, facilitating the identification of particle behaviors and the detection of changes in diffusion states. However, analyzing short and noisy video data, which often yield incomplete and heterogeneous trajectories, poses a significant challenge for traditional statistical approaches. We introduce a data-driven method that integrates particle tracking, an attention U-Net architecture, and a change-point detection algorithm to address these issues. This approach not only infers the anomalous diffusion parameters with high accuracy but also identifies temporal transitions between different states, even in the presence of noise and limited temporal resolution. Our methodology demonstrated strong performance in the 2nd Anomalous Diffusion (AnDi) Challenge benchmark within the top submissions for video tasks.