Time series analysis comprises statistical methods for analyzing a sequence of data points collected over an interval of time to identify interesting patterns and trends.
Multivariate time-series forecasting, as a typical problem in the field of time series prediction, has a wide range of applications in weather forecasting, traffic flow prediction, and other scenarios. However, existing works do not effectively consider the impact of extraneous variables on the prediction of the target variable. On the other hand, they fail to fully extract complex sequence information based on various time patterns of the sequences. To address these drawbacks, we propose a DA-SPS model, which adopts different modules for feature extraction based on the information characteristics of different variables. DA-SPS mainly consists of two stages: the target variable processing stage (TVPS) and the extraneous variables processing stage (EVPS). In TVPS, the model first uses Singular Spectrum Analysis (SSA) to process the target variable sequence and then uses Long Short-Term Memory (LSTM) and P-Conv-LSTM which deploys a patching strategy to extract features from trend and seasonality components, respectively. In EVPS, the model filters extraneous variables that have a strong correlation with the target variate by using Spearman correlation analysis and further analyses them using the L-Attention module which consists of LSTM and attention mechanism. Finally, the results obtained by TVPS and EVPS are combined through weighted summation and linear mapping to produce the final prediction. The results on four public datasets demonstrate that the DA-SPS model outperforms existing state-of-the-art methods. Additionally, its performance in real-world scenarios is further validated using a private dataset collected by ourselves, which contains the test items' information on laptop motherboards.
Real-world time series exhibit complex and evolving dynamics, making accurate forecasting extremely challenging. Recent multi-modal forecasting methods leverage textual information such as news reports to improve prediction, but most rely on token-level fusion that mixes temporal patches with language tokens in a shared embedding space. However, such fusion can be ill-suited when high-quality time-text pairs are scarce and when time series exhibit substantial variation in scale and characteristics, thus complicating cross-modal alignment. In parallel, Mixture-of-Experts (MoE) architectures have proven effective for both time series modeling and multi-modal learning, yet many existing MoE-based modality integration methods still depend on token-level fusion. To address this, we propose Expert Modulation, a new paradigm for multi-modal time series prediction that conditions both routing and expert computation on textual signals, enabling direct and efficient cross-modal control over expert behavior. Through comprehensive theoretical analysis and experiments, our proposed method demonstrates substantial improvements in multi-modal time series prediction. The current code is available at https://github.com/BruceZhangReve/MoME
Change Point Detection (CPD) is a critical task in time series analysis, aiming to identify moments when the underlying data-generating process shifts. Traditional CPD methods often rely on unsupervised techniques, which lack adaptability to task-specific definitions of change and cannot benefit from user knowledge. To address these limitations, we propose MuRAL-CPD, a novel semi-supervised method that integrates active learning into a multiresolution CPD algorithm. MuRAL-CPD leverages a wavelet-based multiresolution decomposition to detect changes across multiple temporal scales and incorporates user feedback to iteratively optimize key hyperparameters. This interaction enables the model to align its notion of change with that of the user, improving both accuracy and interpretability. Our experimental results on several real-world datasets show the effectiveness of MuRAL-CPD against state-of-the-art methods, particularly in scenarios where minimal supervision is available.
Time series forecasting requires capturing patterns across multiple temporal scales while maintaining computational efficiency. This paper introduces AWGformer, a novel architecture that integrates adaptive wavelet decomposition with cross-scale attention mechanisms for enhanced multi-variate time series prediction. Our approach comprises: (1) an Adaptive Wavelet Decomposition Module (AWDM) that dynamically selects optimal wavelet bases and decomposition levels based on signal characteristics; (2) a Cross-Scale Feature Fusion (CSFF) mechanism that captures interactions between different frequency bands through learnable coupling matrices; (3) a Frequency-Aware Multi-Head Attention (FAMA) module that weights attention heads according to their frequency selectivity; (4) a Hierarchical Prediction Network (HPN) that generates forecasts at multiple resolutions before reconstruction. Extensive experiments on benchmark datasets demonstrate that AWGformer achieves significant average improvements over state-of-the-art methods, with particular effectiveness on multi-scale and non-stationary time series. Theoretical analysis provides convergence guarantees and establishes the connection between our wavelet-guided attention and classical signal processing principles.
Test-Time Scaling enhances the reasoning capabilities of Large Language Models by allocating additional inference compute to broaden the exploration of the solution space. However, existing search strategies typically treat rollouts as disposable samples, where valuable intermediate insights are effectively discarded after each trial. This systemic memorylessness leads to massive computational redundancy, as models repeatedly re-derive discovered conclusions and revisit known dead ends across extensive attempts. To bridge this gap, we propose \textbf{Recycling Search Experience (RSE)}, a self-guided, training-free strategy that turns test-time search from a series of isolated trials into a cumulative process. By actively distilling raw trajectories into a shared experience bank, RSE enables positive recycling of intermediate conclusions to shortcut redundant derivations and negative recycling of failure patterns to prune encountered dead ends. Theoretically, we provide an analysis that formalizes the efficiency gains of RSE, validating its advantage over independent sampling in solving complex reasoning tasks. Empirically, extensive experiments on HMMT24, HMMT25, IMO-Bench, and HLE show that RSE consistently outperforms strong baselines with comparable computational cost, achieving state-of-the-art scaling efficiency.
Recent progress at the intersection of large language models (LLMs) and time series (TS) analysis has revealed both promise and fragility. While LLMs can reason over temporal structure given carefully engineered context, they often struggle with numeric fidelity, modality interference, and principled cross-modal integration. We present TS-Debate, a modality-specialized, collaborative multi-agent debate framework for zero-shot time series reasoning. TS-Debate assigns dedicated expert agents to textual context, visual patterns, and numerical signals, preceded by explicit domain knowledge elicitation, and coordinates their interaction via a structured debate protocol. Reviewer agents evaluate agent claims using a verification-conflict-calibration mechanism, supported by lightweight code execution and numerical lookup for programmatic verification. This architecture preserves modality fidelity, exposes conflicting evidence, and mitigates numeric hallucinations without task-specific fine-tuning. Across 20 tasks spanning three public benchmarks, TS-Debate achieves consistent and significant performance improvements over strong baselines, including standard multimodal debate in which all agents observe all inputs.
Time series forecasting (TSF) faces challenges in modeling complex intra-channel temporal dependencies and inter-channel correlations. Although recent research has highlighted the efficiency of linear architectures in capturing global trends, these models often struggle with non-linear signals. To address this gap, we conducted a systematic receptive field analysis of convolutional neural network (CNN) TSF models. We introduce the "individual receptive field" to uncover granular structural dependencies, revealing that convolutional layers act as feature extractors that mirror channel-wise attention while exhibiting superior robustness to non-linear fluctuations. Based on these insights, we propose ACFormer, an architecture designed to reconcile the efficiency of linear projections with the non-linear feature-extraction power of convolutions. ACFormer captures fine-grained information through a shared compression module, preserves temporal locality via gated attention, and reconstructs variable-specific temporal patterns using an independent patch expansion layer. Extensive experiments on multiple benchmark datasets demonstrate that ACFormer consistently achieves state-of-the-art performance, effectively mitigating the inherent drawbacks of linear models in capturing high-frequency components.
Time Series Foundation Models (TSFMs) are a powerful paradigm for time series analysis and are often enhanced by synthetic data augmentation to improve the training data quality. Existing augmentation methods, however, typically rely on heuristics and static paradigms. Motivated by dynamic data optimization, which shows that the contribution of samples varies across training stages, we propose OATS (Online Data Augmentation for Time Series Foundation Models), a principled strategy that generates synthetic data tailored to different training steps. OATS leverages valuable training samples as principled guiding signals and dynamically generates high-quality synthetic data conditioned on them. We further design a diffusion-based framework to produce realistic time series and introduce an explore-exploit mechanism to balance efficiency and effectiveness. Experiments on TSFMs demonstrate that OATS consistently outperforms regular training and yields substantial performance gains over static data augmentation baselines across six validation datasets and two TSFM architectures. The code is available at the link https://github.com/microsoft/TimeCraft.
Time series anomaly detection is critical for supply chain management to take proactive operations, but faces challenges: classical unsupervised anomaly detection based on exploiting data patterns often yields results misaligned with business requirements and domain knowledge, while manual expert analysis cannot scale to millions of products in the supply chain. We propose a framework that leverages large language models (LLMs) to systematically encode human expertise into interpretable, logic-based rules for detecting anomaly patterns in supply chain time series data. Our approach operates in three stages: 1) LLM-based labeling of training data instructed by domain knowledge, 2) automated generation and iterative improvements of symbolic rules through LLM-driven optimization, and 3) rule augmentation with business-relevant anomaly categories supported by LLMs to enhance interpretability. The experiment results showcase that our approach outperforms the unsupervised learning methods in both detection accuracy and interpretability. Furthermore, compared to direct LLM deployment for time series anomaly detection, our approach provides consistent, deterministic results with low computational latency and cost, making it ideal for production deployment. The proposed framework thus demonstrates how LLMs can bridge the gap between scalable automation and expert-driven decision-making in operational settings.
Accurate clinical prognosis requires synthesizing structured Electronic Health Records (EHRs) with real-time physiological signals like the Electrocardiogram (ECG). Large Language Models (LLMs) offer a powerful reasoning engine for this task but struggle to natively process these heterogeneous, non-textual data types. To address this, we propose UniPACT (Unified Prognostic Question Answering for Clinical Time-series), a unified framework for prognostic question answering that bridges this modality gap. UniPACT's core contribution is a structured prompting mechanism that converts numerical EHR data into semantically rich text. This textualized patient context is then fused with representations learned directly from raw ECG waveforms, enabling an LLM to reason over both modalities holistically. We evaluate UniPACT on the comprehensive MDS-ED benchmark, it achieves a state-of-the-art mean AUROC of 89.37% across a diverse set of prognostic tasks including diagnosis, deterioration, ICU admission, and mortality, outperforming specialized baselines. Further analysis demonstrates that our multimodal, multi-task approach is critical for performance and provides robustness in missing data scenarios.